K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x-2017=0 và y-2018=0

=>x=2017; y=2018

b: =>3x-y=0 và y+2/3=0

=>y=-2/3 và 3x=-2/3

=>x=-2/9 và y=-2/3

c: =>3/4x-1/2=0 và 4/5y+6/25=0

=>x=2/3 và y=-3/10

21 tháng 12 2017

\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)

\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)

\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)

\(\Rightarrow x\ge y\)

Vậy với \(x\ge y\Rightarrowđpcm\)

12 tháng 12 2018

Bạn giải thích bước (x-y)(\(^{x^{2017}-y^{2017}}\)) \(\ge\)0 đi, mk chưa hiểu lắm .

4 tháng 1 2018

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)

\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)

\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)

\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)

\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)

Đến đây dễ rồi bạn tự làm tiếp nhê

7 tháng 3 2020

Làm tiếp kiểu j bạn???

9 tháng 1 2020

Tham khảo

Cho x+y= 2. CMR : x^2017 + y^2017 bé hơn hoặc bằng x^2018+ y^2018 

16 tháng 1 2020

Đáp án đây bạn https://hoidap247.com/cau-hoi/196616