K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

A B C D E I H

a) Cm BD = CE

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)là tam giác cân tại A

Xét \(\Delta EBC\)và \(\Delta DCB\)

Góc B = Góc C (Vì \(\Delta ABC\)cân)

BC : cạnh huyền chung

=> \(\Delta EBC=\Delta DCB\)(cạnh huyền - góc nhọn)

=> BD = CE (cạnh tương ứng) => ĐPCM

b) CM: EI = DI

Xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)}\)

=> \(\widehat{BAH}=\widehat{CAH}\)(góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

\(\widehat{BAH}=\widehat{CAH}\) ( cmt)

do đó \(\Delta AIE=\Delta AID\) ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   \(\widehat{BAH}=\widehat{CAH}\) mà tia AH nằm giữa tia AB và AC nên AH là phân giác \(\widehat{BAC}\) (1)

\(\Delta AIE=\Delta AID\) suy ra \(\widehat{EAI}=\widehat{DAI}\) ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác \(\widehat{EAD}\) hay \(\widehat{BAD}\) (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng 

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

a)

Do $AB=AC$ nên tam giác $ABC$ cân. Do đó: \(\angle ABC=\angle ACB\Leftrightarrow \angle EBC=\angle DCB\) (1)

\(\Rightarrow 90^0-\angle EBC=90^0-\angle DCB\)

\(\Leftrightarrow \angle ECB=\angle DBC\) (2)

Xét tam giác $EBC$ và tam giác $DCB$ có:

\(\left\{\begin{matrix} \angle EBC=\angle DCB(\text{ theo (1)})\\ \angle ECB=\angle DBC(\text{ theo (2))}\\ BC-\text{chung}\end{matrix}\right.\)

\(\Rightarrow \triangle EBC=\triangle DCB(g.c.g)\Rightarrow EC=DB\) (*)

b) Theo phần a \(\angle ECB=\angle DBC\Leftrightarrow \angle ICB=\angle IBC\)

Do đó tam giác $IBC$ cân tại $I$

\(\Rightarrow IB=IC\) (**)

Từ (*) và (**) suy ra \(EC-IC=DB-IB\Leftrightarrow EI=DI\)

c)

Kéo dài $AI$ cắt BC tại $H'$

Vì $I$ là giao điểm của đường cao $BD,CE$ nên $AH'$ cũng là đường cao của tam giác $ABC$

\(\Rightarrow AH'\perp BC\)

Ta có: \(\angle ABH'=90^0-\angle BAH'; \angle ACH'=90^0-\angle CAH'\)

Mà \(\angle ABH'=\angle ACH'\Rightarrow \angle BAH'=\angle CAH'\)

Xét tam giác $ABH'$ và tam giác $ACH'$ có:

\(\left\{\begin{matrix} \angle BAH'=\angle CAH'\\ \angle AH'B=\angle AH'C\\ AH'-\text{ chung}\end{matrix}\right.\)

\(\Rightarrow \triangle ABH'=\triangle ACH'(g.c.g)\Rightarrow BH'=CH'\)

Do đó $H'$ là trung điểm của $BC$ hay $H'$ trùng $H$

Từ đó suy ra \(A,I,H\) thẳng hàng.

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Vũ Đẹp Trai : nêu không bạn có thể chứng minh tam giác $ABD$ bằng tam giác $ACE$ dựa vào trường hợp góc- cạnh- góc tương tự như trên cũng được.

16 tháng 11 2023

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: ΔABD=ΔACE

=>AD=AE

Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

=>EI=DI

c: ΔABD=ΔACE

=>BD=CE

BI+DI=BD

CI+EI=CE
mà EI=DI và BD=CE

nên BI=CI

IB=IC

AB=AC

Do đó: AI là đường trung trực của BC

=>AI\(\perp\)BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔAMH có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAMH cân tại A

hay AM=AH(1)

c: Xét ΔANH có

AD là đường cao

AD là đường trung tuyến

Do đó: ΔANH cân tại A

hay AH=AN(2)

Từ (1) và (2) suy ra AM=AN

hay ΔAMN cân tại A

18 tháng 12 2018

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

15 tháng 12 2020

K lm mà đòi cs ăn thì ăn đầu buồy!!

 

bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.

18 tháng 1 2017

A B C E D I

cách giải mk gửi bn sau nhé

18 tháng 1 2017

cách giải đây

\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân

xét \(\Delta EBC\)\(\Delta DCB\)

góc B = góc C ( tam giác cân )

BC là cạnh huyền chung

do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )

suy ra BD = CE ( 2 cạnh tương ứng )

b)  A B C E D I H

xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)

do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

góc BAH = góc CAH ( cmt)

do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)

tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng 

18 tháng 3 2022

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

18 tháng 3 2022

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I