Cho a+b=1. Tính giá trị của biểu thức M=2(a^3+b^3)-3(a^2+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)
\(\Leftrightarrow M=a^2-ab+3ab+b^2\)
\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)
Vậy: Khi a+b=1 thì M=1
M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2
=1-3ab+3ab(1-2ab)+6a^2b^2
=1
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)
\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3a^2-3b^2\)
\(=2\left(a^2-ab+b^2\right)-3a^2-3b^2\)
\(=2a^2-2ab+2b^2-3a^2-3b^2\)
\(=-a^2-2ab-b^2\)
\(=-\left(a+b\right)^2\)
\(=-1\)
Vậy giá trụ của biểu thức M là - 1 tại a + b = 1
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)