Cho Δ ABC. Gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối các tia NM xác định diểm p sao cho NP = MN c/mCP song song với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ANM và tam giác CNP có:
AN=CN( vì N là trung điểm của AC)
góc ANM= góc CNP ( đối đỉnh)
NM=NP
=> tam giác ANM=tam giác CNP ( c.g.c)
=> góc A= góc NCP
mà chúng là 2 góc so le trong => CP//AB
b) theo a) tam giác ANM=tam giác CNP
=> AM=CP
Mà AM= MB ( vì M là trung điểm của AB)
=> CP=MB
c) Vì M là trung điểm của AB, N là trung điểm của AC => MN là đường trung bình của tam giác ABC
=> BC=2MN
a) - Xét tam giác CPN và tam giác AMN có:
MN=NP (gt)
Góc ANM=CNP (2 góc đối đỉnh)
AN=NC (gt)
Do đó: tam giác ANM= tam giác CNP (c.g.c)
- Vì tam giác ANM= tam giác CNP nên góc ANM = góc CNP ( 2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AB//CP
b) Vì tam giác ANM= tam giác CNP( cmt) nên AM =CP (2 cạnh tương ứng)
Mà AM=MB (vì điểm M là trung điểm của AB) nên CP= MB
c) - Ta có: CP= AB ( câu a)
=> Góc BMC= góc MCP (2 góc so le trong)
- Xét tam giác MBC và tam giác CPM có:
MB=PC ( câu b)
MC là cạnh chung
Góc BMC =góc MCD (cmt)
Do đó: tam giác MBC= tam giác CPM (c.g.c)
=> PM= BC ( 2 cạnh tương ứng)
Mà MN= NP hay MP= 2MN
Vậy BC=2MN
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN