Cho tam giác ABC nhọn. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. Chứng minh:
a) CD = BE.
b)CD _|_ BE.
c) BD2 + CE2 = BC2 + DE2.
d) Đường thẳng qua A và vuông góc với DE cắt BC tại K. Chứng minh: KB = KC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABCΔABCcân nên AB=AC
ΔADBΔADBđều nên AD=BD=AB
ΔACEΔACEđều nên AC=CE=AE
=>AB=AC=AD=BD=CE=AE
a)Xét ΔDACΔDACvà ΔBAEΔBAEcó:
BA=AD
ˆDAC=ˆBAEDAC^=BAE^(=90o+60o)
AD=AE
=>ΔDAC=ΔBAEΔDAC=ΔBAE(c.g.c)
=> BE=CD ( cặp cạnh tương ứng) (đpcm)
a) Ta có: gócDAB+gócBAC=gócDAC
gócEAC+gócBAC=gócBAE
MÀ gócDAB=gócEAC(=90độ)
=> gócDAC=gócBAE
xét tam giác DAC và tam giác BAE có:
AD=AB(GT)
AE=AC(GT)
gócDAC=gócBAE(cmt)
=>tam giác DAC =tam giác BAE(c.g.c)
gọi giao điểm của AB và CD là F
giao điểm của BE VÀ CD là I
Xét tam giác afd vuông tại A
=>gócADF+gócDFA=90độ
mà gócADF= gócABI ( tam giác DAC =tam giác BAE )
gócDFA=gócBFI
=> gócABI+gócBFI=90độ
=>gócFIB=90độ
=>CD vuông góc BE
b)từ a
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I
a) Kẻ DM, EN vuông góc BC.
Xét :
_ AC = CE
_
_ (góc có cạnh tương ứng vuông góc)
Nên chúng bằng nhau, suy ra:
Tương tự:
Do (P là giao của CK và BE, quên vẽ) nên CNEP là tứ giác ntiếp
Do đó 2 tam giác vuông
Từ đó:
2 tg này có 2 cặp cạnh tg ứng vuông góc là MD, BH và MC, KH nên cặp còn lại
b) Từ a ta có KH, BE, CD là 3 đường cao , nên chúng đòng quy tại I.