Cho Tam Giác ABC vuông Tại A Cod Góc ABC=60 Độ. Gọi M Là trung Điểm AC
Trên tia Đối Của Tia MB Lấy điểm D Sao cho MB=MD
a) Tính số đo góc ACB
b) Chứng minh tam giác ABM= Tam giác CDM
c) chứng mknh CD vuông góc AC
d) Chứng minh góc ABC= Góc CDA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABM và ∆CDM có:
AM = CM (gt)
AMB = CMD (đối đỉnh)
BM = DM (gt)
⇒ ∆ABM = ∆CDM (c-g-c)
b) Do ∆ABM = ∆CDM (cmt)
⇒ MAB = MCD (hai góc tương ứng)
⇒ MCD = 90⁰
⇒ MC ⊥ CD
⇒ AC ⊥ CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>DC\(\perp\)AC
mà AC\(\perp\)AB
nên AB//DC
c: ΔMAB=ΔMCD
=>AB=CD
Xét ΔKAB và ΔKEC có
KA=KE
\(\widehat{AKB}=\widehat{EKC}\)
KB=KC
Do đó: ΔKAB=ΔKEC
=>AB=EC
ΔKAB=ΔKEC
=>\(\widehat{KAB}=\widehat{KEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
AB//EC
AB//CD
CD,EC có điểm chung là C
Do đó: E,C,D thẳng hàng
AB=EC
AB=CD
Do đó: EC=CD
Ta có: E,C,D thẳng hàng
EC=CD
Do đó: C là trung điểm của ED
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Ta có: ΔABM=ΔCDM
nên \(\widehat{ABM}=\widehat{CDM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=65^o\)
b, Xét △ABM và △DCM
Có: MA = MD (giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=MC\)(M là trung điểm của BC)
=> △ABM = △DCM (c.g.c)
=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // CD
c, Xét △IMB và △KMC
Có: \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)
BM = MC (gt)
\(\widehat{ABC}=\widehat{MCD}\)(cmt)
=> △IMB = △KMC (g.c.g)
=> MI = MK (2 cạnh tương ứng)
Mà M nằm giữa I, K
=> M là trung điểm của IK
a: Xét tứ giác ABCD co
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>CD vuông góc AC
b: AB+BC=AB+AD>BD=2BM
c: góc ABM=góc CDB
mà góc CDB>góc CBM
nên góc ABM>góc CBM
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
Dễ quá . Vì mình học lớp 8 rồi mà sao không để được