K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

D -> the weekend

Bài 12: 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

6 tháng 12 2021

Có thể lm bài 11 đc ko ạ🥺😅

25 tháng 10 2023

10: Chọn B

Ot là phân giác của \(\widehat{MOP}\)

=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)

\(\widehat{MOP}=\widehat{NOQ}\)

=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)

mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)

nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)

=>Ot' là phân giác của góc NOQ

loading...​​

11:

OC là phân giác của góc AOB

=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)

\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)

=>\(\widehat{DOE}+\widehat{DOB}=180^0\)

=>OB và OE là hai tia đối nhau

=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)

=>Chọn D

loading...

12:

\(\widehat{AOC}+\widehat{AOD}=180^0\)

\(\widehat{AOC}-\widehat{AOD}=50^0\)

Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)

=>\(\widehat{BOC}=\widehat{AOD}=65^0\)

=>Chọn B

loading...

29 tháng 6 2021

1 D

2 B

3 A

4 C

5 A

Bài này là dạng suy luận chứ k có dẫn chứng cụ thể như lớp dưới, phải đọc đi đọc lại thì mới làm đc nhé

22 tháng 10 2021

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

22 tháng 10 2021

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

7 tháng 11 2021

là 9 bạn ơi

7 tháng 11 2021

trình bày hộ tui zới

23 tháng 9 2021

Câu 5:

Đoạn văn nói về sự việc chị Dậu cự lại Cai lệ và người nhà Lý trưởng để bảo vệ chồng, qua đây, có thể thấy sức mạnh tiềm tàng, lòng yêu thương chồng của chị.

1 tháng 9 2021

10. Câu này chứng minh BĐT BSC:

\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)

1 tháng 9 2021

11.

Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)

\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)

Đẳng thức xảy ra khi \(a=b=1\)

15 tháng 3 2022

a. \(\widehat{DAB}=\widehat{ABC}=\widehat{BCE}=90^0\)

\(\widehat{ABD}=180^0-\widehat{ABC}-\widehat{EBC}=180^0-60^0-\left(180^0-\widehat{BCE}-\widehat{CEB}\right)=180^0-60^0-\left(180^0-60-\widehat{CEB}\right)=\widehat{CEB}\)\(\Rightarrow\)△ABD∼△CEB (g-g).

\(\Rightarrow\dfrac{AD}{CB}=\dfrac{AB}{CE}\Rightarrow AD.CE=CB.AB\Rightarrow AD.CE=a^2\) không đổi

b. \(\widehat{CAD}=\widehat{BAD}+\widehat{BAC}=60^0+60^0=\widehat{BCE}+\widehat{ACB}=\widehat{ACE}\)

 \(\dfrac{AD}{CB}=\dfrac{AB}{CE}\Rightarrow\dfrac{AD}{AC}=\dfrac{AC}{CE}\)

\(\Rightarrow\)△ACD∼△CEA (c-g-c) 

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ACD}=\widehat{CEA}\\\dfrac{CE}{AC}=\dfrac{EA}{CD}\end{matrix}\right.\)

\(\Rightarrow\)△ACK∼△AEC (g-g).

\(\Rightarrow\dfrac{CK}{EC}=\dfrac{AK}{AC}\Rightarrow\dfrac{CE}{AC}=\dfrac{CK}{AK}\)

\(\Rightarrow\dfrac{AE}{CD}=\dfrac{CK}{AK}\Rightarrow AE.AK=CD.CK\)