Cho A=abba.Chứng tỏ rằng A là mọi STN luôn chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
Nếu n = 2k ( k thuộc N ) thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 ( k thuộc N ) thì n + 3 = 2k + 1 + 3 = 2k + 4 chia hết cho 2
Vậy ( n + 3 ) . ( n + 6 ) chia hết cho 2
Chúc bn hok tốt ~
Bài 1 :
a/ Gọi ba số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=3.a+3⋮3\)
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Gọi bốn số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Bài 2 :
Ta có : \(\overline{aaaaaa}=\overline{a}.111111=\overline{a}.7.31746\)
Vậy \(\overline{aaaaaa}\)bao giờ cũng chia hết cho 7
Bài 3 :
Ta có \(\overline{abcabc}=\overline{abc}.\left(1000+\overline{abc}\right)=\overline{abc}.\left(1000+1\right)=\overline{abc}.1001=\overline{abc}.7.11.13⋮11\)
Vậy : \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Dễ thấy 11n là số lẻ; 35 là một số lẻ
=> 11n + 35 là một số chẵn
=> 11n + 35 chia hết cho 2 ( đpcm )
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
ko có kết quả nha vì nếu n là số lẻ thì n+2=s lẻ n+6=s lẻ mà s lẻ.s lẻ=s lẻ
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
abba = 1000a + 100b + 10b + a
= 1001a + 110b
Vì 110 và 1001 chia hết cho 11. => 110b và 1001a chia hết cho 11.
=> (1001a + 110b) chia hết cho 11
Vậy abba chia hết cho 11
Ta có A=abba
\(\Rightarrow\)A=1000a+100b+10c+1a
A=1001a+101b
mà 1001\(⋮\)11 và 101\(⋮\)11
\(\Rightarrow\)Với mọi stn ta luôn có A\(⋮\)11