Tính bằng cách thuận tiện:
A= 2/2018*2020 + 2021/2020 - 2019/2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
Trả lời:
\(A=\frac{2}{2018.2020}+\frac{2021}{2020}-\frac{2020}{2019}\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-\left(1+\frac{1}{2018}\right)\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-1-\frac{1}{2018}\)
\(A=0\)
\(A=\frac{2}{2018}\cdot2020+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\frac{2\cdot2020-2019}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021\cdot\left(2020+2018\right)}{2018\cdot2020}=\frac{2021\cdot4038}{2018\cdot2020}=\frac{2021\cdot2019\cdot2}{2018\cdot1010\cdot2}=\frac{2020^2-1}{2018\cdot101\cdot10}\)
\(A=\frac{4080399}{20200180}\)
A = 2021/2022+2020/2021+2019/2020+2018/2019+2017/2018
A<2022/2022+2021/2021+2020/2020+2019/2019+2018/2018
A<1+1+1+1+1
A<5
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
\(A=\frac{2}{2018\times2020}+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\frac{2020-2018}{2018\times2020}+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\frac{1}{2018}-\frac{1}{2020}+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\left(\frac{2021}{2020}-\frac{1}{2020}\right)-\left(\frac{2019}{2018}-\frac{1}{2018}\right)\)
\(A=1-1=0\)