K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:

Thực hiện tách P:

\(P=5x+3y+\frac{12}{x}+\frac{16}{y}\)

\(P=2(x+y)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)

Theo đề bài: \(x+y\geq 6\Rightarrow 2(x+y)\geq 12\)

Áp dụng BĐT AM-GM ta có:

\(3x+\frac{12}{x}\geq 2\sqrt{3x.\frac{12}{x}}=12\)

\(y+\frac{16}{y}\geq 2\sqrt{y.\frac{16}{y}}=8\)

Do đó: \(P\geq 12+12+8=32\)

Vậy GTNN của \(P=32\Leftrightarrow (x,y)=(2,4)\)

NV
11 tháng 12 2018

\(P=3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\ge2\sqrt{3x.\dfrac{12}{x}}+2\sqrt{y.\dfrac{16}{y}}+2.6=32\)

\(\Rightarrow P_{min}=32\) khi \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

29 tháng 8 2016

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

29 tháng 8 2016

Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)

Vậy GTNN của x là 6 - y.

Thay 6 - y vào biểu thức đã rút gọn có:

\(A=-2y^3+42y^2-176y-96\)

Giả sử y = 0, ,=> P = -232

Do y > 0 nên P > -232

Vậy: \(Min_P=-232\)

30 tháng 12 2017

*_*

22 tháng 12 2018

P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)

AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)

NV
23 tháng 10 2021

\(P=3\left(x+\dfrac{9}{x}\right)+\left(y+\dfrac{16}{y}\right)+\left(x+y\right)\)

\(P\ge3.2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{y}}+7=33\)

\(P_{min}=33\) khi \(\left(x;y\right)=\left(3;4\right)\)

27 tháng 10

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

7 tháng 3 2022

2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0

=> 2x=3y;  5y=2z ;  3z=5x => x/3=y/2; y/2=z/5

=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31

      x/3 = 3y/6=2z/10 = (x-3y+2z)/7

=>  (12x+5y-3z)/ (x-3y+2z)=31/7

NV
5 tháng 1 2021

\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)