Tim x
\(\left|\frac{2}{5}x+\frac{3}{4}\right|=-\frac{7}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{8}.(\frac{2}{12}+\frac{4}{10})\)
\(\Rightarrow\frac{7}{8}.(\frac{10+24}{60})\)
\(\Rightarrow\frac{7}{8}.\frac{34}{60}=\frac{238}{480}\)
bt2
\(2.x-\frac{5}{4}=\frac{20}{15}\)
\(\Leftrightarrow2x=\frac{20}{15}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{80+75}{60}\)
\(\Leftrightarrow2x=2,5\)
\(\Leftrightarrow x=1,25\)
.7/8.(1/6+2/5)=7/8.17/30=119/240
3/2-5/6:1/4+\(\sqrt{4}\)=3/2-10/3+2=1/6
2x=20/15+5/4
2x=31/12
x=31/12:2
x=31/24
ko bt nha thông cảm
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
cau a dau nhi cuoi cung k phai j dau nha ! mk an lom !
\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)
ta có |x+5| \(\ge\)0 \(\forall x\)
Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn
b,
\(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)
\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
\(\left(3x+1\right)^2=25\)
\(\Rightarrow\left(3x+1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Rightarrow\orbr{\begin{cases}3x=5-1=4\\3x=-5-1=-6\end{cases}}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
\(\left[x-\frac{1}{2}\right]+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x-0=\frac{5}{8}\)
\(x=\frac{5}{8}\)
\(\left[x+\frac{3}{4}\right]-\frac{1}{3}=0\)
\(x+\frac{3}{4}=0+\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-5}{12}\)
Vì \(\left|\frac{2}{5}x+\frac{3}{4}\right|\ge0\)với mọi x
Mà \(\left|\frac{2}{5}x+\frac{3}{4}\right|=-\frac{7}{3}\)
=> \(x\in\phi\)
Vậy \(x\in\phi\)