giải phương trình \(\sqrt{x-5}+\sqrt{7-x}=x^2-6x+11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)
Điều kiện thì bn tự tìm nhé
\(\left(1+1\right)\left(x-2+4-x\right)\ge\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=>\sqrt{x-2}+\sqrt{4-x}\le2\left(buhihacopxki\right)\)
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
dấu bằng xảy ra khi x=3 (tm)
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \) ta được
\(3{x^2} - 6x + 1 = - 2{x^2} - 9x + 1\)
\( \Leftrightarrow 5{x^2} + 3x = 0\)
\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \) , ta được
\(2{x^2} - 3x - 5 = {x^2} - 7\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Dùng Am-Gm ta có: VT =< 2* căn ( x - 2+ 4 - x)/( 2) ) =2
VP=x^2 - 6x + 11 = x^2 - 6x +9 +2
=(x - 3)^2 +2 >= 2
Do VT =< 2 =< VP -
Từ đây =>x=3 thỏa mãn pt
rut gon dum minh
\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\) (1) (ĐKXĐ : \(2\le x\le4\) )
Xét vế trái : \(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)(Áp dụng bất đẳng thức Bunhiacopxki)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le4\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Xét vế phải : \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Do đó, phương trình (1) tương đương với : \(\begin{cases}2\le x\le4\\\sqrt{x-2}+\sqrt{4-x}=2\\x^2-6x+11=2\end{cases}\)\(\Rightarrow x=3\)
Vậy phương trình có nghiệm x = 3
a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)
=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)
=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)
=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)