Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) biết góc BAC = 90*. tính tổng sau : góc MDC+MAC, từ đó tính DCA
a, Xét \(\Delta MAB-\Delta MDC:\)
\(\widehat{M_1}=\widehat{M_2}\)
\(AM=MD\left(gt\right)\)
\(BM=MC\left(gt\right)\)
\(\Rightarrow\)\(\Delta MAB=\Delta MDC\left(c.g.c\right)\)
b, Có \(\Delta MAB=\Delta MDC\left(cmt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{D_1}\)
Hay AB // CD.
xét tam giác suy ra 2 góc slt bằng nhau