chứng minh x thuộc N để 65+x2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dây là 4 số nguyên dương liên tiếp, còn phần kia tương tự nha
Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2)
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N)
Ta thấy
t² < A = t² + 2t < t² + 2t + 1 = (t+1)²
=> A nằm giữa 2 số chính phương liên tiếp
=> A không phải là số chính phương (đpcm)
Giả sử \(y\) là số lẻ
Đặt \(\left\{{}\begin{matrix}x^2-y=m^2\\x^2+y=n^2\end{matrix}\right.\left(m,n\inℕ;m< n\right)\)
\(\Rightarrow2y=n^2-m^2\) \(\Rightarrow n^2-m^2\) chia hết cho 2 nhưng không chia hết cho 4.
Thế nhưng, ta thấy \(n^2\) và \(m^2\) khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1, vậy nên \(n^2-m^2\) khi chia cho 4 sẽ chỉ có số dư là \(0,1,-1\), nghĩa là nếu \(n^2-m^2\) mà chia hết cho 2 thì buộc hiệu này phải chia hết cho 4, mâu thuẫn. Vậy điều giả sử là sai \(\Rightarrow\) đpcm.
số các số của A là:
(2n+1-1):2+1=n+1(số)
tổng A là:
(2n+1+1)(n+1):2=(n+1)2 là số chính phương
=>đpcm
a.đặt a+15=b2;a-1=c2
=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)
=>(b+c)(b-c)=16
ta có 2 nhận xét:
*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.
*b+c>b-c(vì a là số tự nhiên)
=>b+c=8 và b-c=2 =>b=(8+2):2=5
vậy a+15=52=>a=10