K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Chọn D

Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:

Từ bảng biến thiên, ta có nhận xét sau: 

Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

16 tháng 9 2017

Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ),  x 0  ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.

Đáp án: D

24 tháng 12 2021

y=5

=>2/3x=-1

hay x=-3/2

y=-4

=>2/3x=-10

hay x=-15

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Xét hàm số f(x) thỏa mãn f(x)+3f(1/x)=x^2. với mọi x thuộc R. 
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4 
=> f(2) + 3f(1/2) = 4 ( 1 ) 
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4. 
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 ) 
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4 
=> f(2) = -13 / 32

22 tháng 11 2021

1 nhé