K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Trả lời nhanh dum minh cai

18 tháng 10 2021

Ta có: \(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015.2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016.2017}\)

\(2015.2018=2015.2017+2015=2017\left(2015+1\right)-2017+2015=2017.2016-2\)\(\Rightarrow2015.2018< 2016.2017\)

\(\Rightarrow4033+2\sqrt{2015.2018}< 4033+2\sqrt{2016.2017}\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\left(đpcm\right)\)

18 tháng 10 2021

Đặt \(A=\sqrt{2015}+\sqrt{2018}\Rightarrow A^{^2}=4033+2\sqrt{2015.2018}\)

\(B=\sqrt{2016}+\sqrt{2017}\Rightarrow B^{^2}=4033+2\sqrt{2016.2017}\)

Ta có: 2015.2018 = 2015.2017 + 2015

2016.2017 = 2015.2017 + 2017

Dễ dàng thấy được 2015.2018 < 2016.2017 => A2 < B2

=> A < B

8 tháng 9 2019

A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

=> A<B

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

2 tháng 1 2018

theo em là A=B

em mới học lớp 5 thôi chưa chắc đúng đâu

2017=2017

2018 hơn 2016 là 2 đơn vị

2017 lớn hơn 2016 là 1 đơn vị

2017 lớn hơn 2016 1 đơn vị

A hơn B số đăn vị là:

2-(1+1)=0

Nên A=B

2 tháng 1 2018

thanks em nha anh sẽ xem lại

Ai có kết quả nữa thì giúp mình nha

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn

16 tháng 10 2017

Ta có \(\sqrt{2015}+\sqrt{2016}< \sqrt{2016}+\sqrt{2017}\)

mà \(\left(\sqrt{2015}-\sqrt{2016}\right)\cdot\left(\sqrt{2015}+\sqrt{2016}\right)\)\(=\left(\sqrt{2016}-\sqrt{2017}\right)\cdot\left(\sqrt{2016}+\sqrt{2017}\right)\)\(=1\)

Suy ra \(\sqrt{2015}-\sqrt{2016}>\sqrt{2016}-\sqrt{2017}\)

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y