K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

pn tự vẽ hình nhak 

 a, có MP // DE (GT) suy ra MP // DN ( N thuộc DF ) 

         MN // DF (GT) suy ra MN // DP ( P thuộc DF ) 

Suy ra tứ giác NMPD là hình bình hành ( dấu hiệu nhận biết các cạnh đối // )

 b, ( cm ngược lại nhak )

  có tứ giác NMPD là HCN suy ra góc NDB = 90 độ

                                           suy ra tam giác DEF vuông tại D

 Vậy nếu tam giác DEF vuông tại D thì tứ giác NMPD là HCN 

 c, có tứ giác NMPD là HV suy ra DM là tia phân giác của góc D ứng vs cạnh EF 

Vậy nếu DM là tia phân giác của góc D thì tứ giác MNPD là HV 

 <<< mk lm v có j sai sót pn góp ý dùm mk nhak >>>

31 tháng 10 2016

bài này tương tự bài 1

a) EF = 15

=> DM = EM = FM = 7,5

b) MND + D = 180

MND + 90 = 180 

=> MND = 90

D + MED = 180

90 + MED = 180

=> MED = 90

=> DNME là hình chữ nhật

c) y hệt như bài trước mik giải

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

b: Để AEDF là hình thang vuông thì góc A=90 độ

19 tháng 11 2017

bạn tự vẽ hình nha!Nên sửa DQEF thành DQEP.

a,tứ giác DQEP có:ME=MD,MQ=MP nên DQEP là hình bình hành.

Lại có:DE vuông góc với QP nên hình bình hành DQEP là hình thoi.

b,DQEP là hình thoi nên EP song song với DQ mà FK song song với PE nên DQ song song với FK(1)

Lại có:DF và QK cùng vuông góc với DM  nên DF song song với QK(2).

Từ (1) và (2) suy ra DFKQ là hình bình hành

19 tháng 11 2017

Ai giải chi tiết dc ko

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A