Cho tam giác ABC vuông tại A (AC>AB)M là trung điểm của AC,H là điểm nằm trong tam giác ABC sao cho MH vuông góc với AC .Trên tia đối của tia MH lấy K sao cho MH=MK. 1) chứng minh : tứ giác AHCK là hình thoi. 2) qua B vẽ đường thẳng song song với CH cắt tia KH tại E.Chứng minh tứ giác ABEK là hình bình hành. 3)Gọi N là giao điểm của HE và BC. a) chứng minh AB = 2MN. b) cho MN = 3cm,AN=5cm.Tính chu vi của tam giác ABC. Các bạn ơi giúp mình với mai mình phải nộp bài rồi . Mình cảm ơn các bạn 😅😅😅😅
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé bạn:vv
a) Xét ∆MHC và ∆MKB:
\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)
\(CM=MB\left(gt\right)\)
\(HM=MK\left(gt\right)\)
=> ∆MHC=∆MKB(c.g.c)
b) Vì ∆ABC vuông ở A có đường trung tuyến AM
\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)
=> ∆AMC cân tại M
=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.
=> AH=CH
Mà theo câu a: ∆MHC=∆MKB
=> CH=KB (2 cạnh tương ứng)
=> AH=KB
=> Đpcm
c) Xét ∆ABC có : AM và BH là 2 đường cao
=> I là trọng tâm của ∆ABC
Mà D là trung điểm của AB
=> CD là đường cao thứ 3 của ∆ABC
=> CD phải đi qua trọng tâm I
=> C, D, I thẳng hàng.
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
b: Xét ΔABC có
M là trung điểm của CB
MH//AB
Do đó: H là trung điểm của AC
Xét tứ giác AMCD có
H là trung điểm chung của AC và MD
nên AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Để AMCD là hình vuông thì \(\widehat{MCD}=90^0\)
AMCD là hình thoi
=>AC là phân giác của \(\widehat{MAD}\) và CA là phân giác của \(\widehat{MCD}\)
=>\(\widehat{MCA}=\dfrac{1}{2}\cdot\widehat{BAC}=45^0\)
=>\(\widehat{ACB}=45^0\)