K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1         ( n e N )

    Ta có : 4n + 3 \(⋮\)d                  ( 1 )

                2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d                      ( 2 )

      Từ ( 1 ) và ( 2 ) suy ra :       ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d

                                          hay          1 \(⋮\)d      suy ra       d = 1

                       Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1 

b)   Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5 

      Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d                  ( 1 )

                  4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d                  ( 2 )

        Từ ( 1 ) và ( 2 ) suy ra

             ( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d

       Hay 13 \(⋮\)d

      Suy ra d e ƯC ( 13 ) = { 1 ; 13 }

          Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13

                  suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2       ( k e N )

                    Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13  nên d không thể là 13.

             Do đó d = 1 

                    Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1

  

3 tháng 12 2017

) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.

25 tháng 2 2020

mk cx hok bồi nek

sao thấy đề bồi này nó cứ dễ sao ấy

8 tháng 12 2015

gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3

gọi d là ƯCLN( 2K+1;2K+3)

ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d

suy ra 2k+3 - 2k - 1 = 2 chia hết cho d

mà số lẻ ko chia hết cho 2

suy ra d = 1 

vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau

8 tháng 12 2015

nhiều quá, bn giảm xuống mk làm cho

14 tháng 12 2017

Đặt ƯCLN ( a,b ) = d ( d thuộc N )

Thay a = 5n + 3 , b = 6n + 1

=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)

=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13

ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13

Vậy ƯCLN ( a , b ) = 13

28 tháng 12 2017

ƯCLN(a,b)=13

22 tháng 8 2016

Gọi ước chung lớn nhất của chúng là d.

Ta có:

3n+1 chia hết cho d.

15n+5 chia hết cho d.

5n+4 chia hết cho d.

15n+12 chia hết cho d.

Hiệu:15n-15n+12-5 chia hết cho d.

7 chia hết cho d mà d khác 1 nên d=7.

Vậy ước chung lớn nhất là 7.

Chúc em học tốt^^

22 tháng 8 2016

Gọi d = ƯCLN(3n + 1; 5n + 4) (d thuộc N*)

=> 3n + 1 chia hết cho d; 5n + 4 chia hết cho d

=> 5.(3n + 1) chia hết cho d; 3.(5n + 4) chia hết cho d

=> 15n + 5 chia hết cho d; 15n + 12 chia hết cho d

=> (15n + 12) - (15n + 5) chia hết cho d

=> 15n + 12 - 15n - 5 chia hết cho d

=> 7 chia hết cho d

=> d thuộc {1 ; 7}

Do 3n + 1 và 5n + 4 là 2 số không nguyên tố cùng nhau => d khác 1

=> d = 7

=> ƯCLN(3n + 1; 5n + 4) = 7

26 tháng 11 2018

a) Gọi ƯCLN(4n+1;6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

<=> 12n + 3 - 12n -2 \(⋮\)d

<=> 3 - 2  \(⋮\)d  (trừ 12n)

<=> d = 1

Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau

b) Gọi ƯCLN(5n+4;6n+5) = d

=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)

<=>30n + 25 - 30n + 24 \(⋮\)d

<=>25 - 24 \(⋮\)(bỏ đi 30n)

<=> d = 1

Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau

Bài 2: 

\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)

hay \(n\in\left\{0;1;3\right\}\)