Cho n thuộc N . Tìm ƯCLN của:
a, n + 8 và n + 1 biết n + 8 và n + 1 không nguyên tố cùng nhau
b,6n + 1 và 4n + 5 với n không bằng 13k + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 \(⋮\)d ( 1 )
2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d
hay 1 \(⋮\)d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d ( 1 )
4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d
Hay 13 \(⋮\)d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
Do đó d = 1
Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
Cho a và b là hai số không nguyên tố cùng nhau : a=5n+3 ; b=6n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Đặt ƯCLN ( a,b ) = d ( d thuộc N )
Thay a = 5n + 3 , b = 6n + 1
=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)
=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13
ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13
Vậy ƯCLN ( a , b ) = 13
Gọi ước chung lớn nhất của chúng là d.
Ta có:
3n+1 chia hết cho d.
15n+5 chia hết cho d.
5n+4 chia hết cho d.
15n+12 chia hết cho d.
Hiệu:15n-15n+12-5 chia hết cho d.
7 chia hết cho d mà d khác 1 nên d=7.
Vậy ước chung lớn nhất là 7.
Chúc em học tốt^^
Gọi d = ƯCLN(3n + 1; 5n + 4) (d thuộc N*)
=> 3n + 1 chia hết cho d; 5n + 4 chia hết cho d
=> 5.(3n + 1) chia hết cho d; 3.(5n + 4) chia hết cho d
=> 15n + 5 chia hết cho d; 15n + 12 chia hết cho d
=> (15n + 12) - (15n + 5) chia hết cho d
=> 15n + 12 - 15n - 5 chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1 ; 7}
Do 3n + 1 và 5n + 4 là 2 số không nguyên tố cùng nhau => d khác 1
=> d = 7
=> ƯCLN(3n + 1; 5n + 4) = 7
a) Gọi ƯCLN(4n+1;6n+1) = d
=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)
<=> 12n + 3 - 12n -2 \(⋮\)d
<=> 3 - 2 \(⋮\)d (trừ 12n)
<=> d = 1
Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau
b) Gọi ƯCLN(5n+4;6n+5) = d
=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)
<=>30n + 25 - 30n + 24 \(⋮\)d
<=>25 - 24 \(⋮\)d (bỏ đi 30n)
<=> d = 1
Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau
Bài 2:
\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)
hay \(n\in\left\{0;1;3\right\}\)