tìm a,b là stn thoả mãn ( 5a+1)(5a+2)=3b+41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\). \(a;b;c;d\ne0\) và \(a;b;c;d\in R\left(b^2=ac\right)\)
Ta có : \(\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\left(1\right)\)
\(\frac{5a-3b}{5c-3d}=\frac{5bk-3b}{5dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\left(2\right)\) . Từ \(\left(1\right)\left(2\right)\)
Suy ra \(\frac{5a+3b}{5c+3d}=\frac{b}{d}=\frac{5a-3b}{5c-3d}\). Áp dụng tính chất cảu tỉ lệ thức
\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Leftrightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
mắt cận hử ? sao chép lại đề sai nhiều thế hả ?
\(\frac{5a+3b}{5x+3d}\)haizz \(\frac{5a+3b}{5a-3b}\)
uk tương tự đấy, đừng lm nữa.
Ta có: 2a+3b là số hữu tỉ
=> 5(2a+3b)=10a+15b là số hữu tỉ
5a-4b là số hữu tỉ
=> 2(5a-4b)=10a -8b là số hữu tỉ
=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b
=> b là số hữu tỉ
=> 3b là số hữu tỉ
=> (2a+3b)-3b =2a là số hữu tỉ
=> a là số hữu tỉ
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)
Gọi \(UCLN\left(13a+8b,5a+3b\right)=d\) \(\left(d\ge1\right)\)
Ta có \(\hept{\begin{cases}13a+8b⋮d\\5a+3b⋮d\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(13a+8b\right)\times2⋮d\\\left(5a+3b\right)\times5⋮d\end{cases}}\) \(\Leftrightarrow\left(26a+16b\right)-\left(25a+15b\right)⋮d\)
\(\Leftrightarrow\)\(\left(a+b\right)⋮d\)
Từ đó suy ra đpcm.
Ở phân thức đầu tiên, bạn nhân cả tử và mẫu với c. Lúc này nó trở thành a^2.c/(1 + a^2.c + c).
Phân thức thứ 2, chuyển số 5 thành a^2.bc và chia cả tử lẫn mẫu cho b.
Phân thức cuối giữ nguyên.
Lúc này biểu thức cuối trở thành dạng cùng mẫu.
Tính như bình thường, kết quả là 1.
a=1 ; b=0