Tìm các số A, B, C để có: \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
mà x là số nguyên
nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)
Ta có :
\(B=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)\)
\(B=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x.\left(x+1\right)}{2}\)
\(B=1+\frac{3}{2}+\frac{4}{2}+...+\frac{x+1}{2}\)
\(B=\frac{2+3+4+...+\left(x+1\right)}{2}\)
để B = 115 thì \(\frac{2+3+4+...+\left(x+1\right)}{2}=115\)
\(\Rightarrow\)\(\left(x+3\right)x=115.2.2\)
\(\Rightarrow\)\(\left(x+3\right)x=23.20\)
\(\Rightarrow\)x = 20
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)