K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

2)

a)Thay m = 2 vào hệ, ta được :

HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)

Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)

\(\Leftrightarrow x+y=1\)(***)

Lấy (**) trừ (***), ta được :

\(\Leftrightarrow x+3y-x-y=2-1\)

\(\Leftrightarrow2y=1\)

\(\Leftrightarrow y=\frac{1}{2}\)

\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)

b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :

HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)

\(\Leftrightarrow m=-1\)

Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)

11 tháng 2 2018

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

11 tháng 2 2018

cảm ơn cậu giúp mk câu c với ạ

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

14 tháng 2 2016

ý b anh biết làm nè 

14 tháng 2 2016

ủng hộ mình lên 210 diểm nha 

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)4. Tìm số nguyên \(x\)sao...
Đọc tiếp

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)

2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)

3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)

4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)

6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)

7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên 

8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)

a) Tìm số nguyên \(n\)để \(A\)là phân số 

b) Tìm số nguyên \(n\)để \(A\)là số nguyên 

9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên

10. Tìm tập hợp các số nguyên \(a\)là bội của 3:

\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)

 

0
25 tháng 4 2018

Ta có :

\(B=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)\)

\(B=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x.\left(x+1\right)}{2}\)

\(B=1+\frac{3}{2}+\frac{4}{2}+...+\frac{x+1}{2}\)

\(B=\frac{2+3+4+...+\left(x+1\right)}{2}\)

để B = 115 thì \(\frac{2+3+4+...+\left(x+1\right)}{2}=115\)

\(\Rightarrow\)\(\left(x+3\right)x=115.2.2\)

\(\Rightarrow\)\(\left(x+3\right)x=23.20\)

\(\Rightarrow\)x = 20

11 tháng 1 2015

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

11 tháng 1 2015

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)