K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:

\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)

\(\ge\left|x+3+1-x\right|=4\left(1\right)\)

Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)

\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)

\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)

Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)

Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)

20 tháng 3 2017

Thánh Toán ~.~

Lập bảng xét dấu là ra thôi bài này dễ mà

3 tháng 5 2016

ns nghe thì dễ nhưng trình bày sao

24 tháng 6 2018

\(\left|2x-1\right|+3=3\)

\(\left|2x-1\right|=3-3\)

\(\left|2x-1\right|=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

KL:....................

\(\left|x-2\right|+1=2\)

\(\left|x-2\right|=1\)

\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

KL:........................................

Câu 3 tương tự

lát mk làm tiếp cho

24 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left|x^2-9\right|\ge0\forall x\\\left|x+3\right|\ge0\forall x\end{cases}}\)

Mà \(\left|x^2-9\right|+\left|x+3\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x^2-9\right|=0\\\left|x+3\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=9\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\x=-3\end{cases}\Rightarrow}x=-3}\)

Vậy \(x=-3\)

\(\left|x-2\right|=x-2\)

\(\Rightarrow x-2\ge0\forall x\)

\(\Rightarrow x\ge2\)

Vậy \(x\ge2\)

\(\left|x-3\right|=3-x\)

\(\Rightarrow\left|x-3\right|=-\left(x-3\right)\)

\(\Rightarrow x-3\le0\)

\(\Rightarrow x\le3\)

Vậy \(x\le3\)

25 tháng 10 2016

chia khoang 

nghiệm của ba số hạng là 

x=3

x= -4/3 

x=-1/2

-4/3<-1/2<3

x<-4/3 

-(x-3)-(3x+4)=-(2x+1)

-x+3-3x-4=-2x-1=> 2x=0=> x=0 loại

-4/3<=x<-1/2

-(x-3)+3x+4=-2x-1

-x+3+3x+4=-2x-1=>4x=-7=>x=-7/4 loại

-1/2<=x<3

-x+3+3x+4=2x+1  2x+7=2x+1=>vô gnhiệm

x>=3

x-3+3x+4=2x+1

2x=0

x=0 loại

(1) vô nghiệm mỏi rồi