K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2024

`b,` Ta có:
`ΔABM = ΔACM (CMT)`
Suy ra: `∠BAM = ∠CAM` (hai góc tương ứng)
Mà `∠BAM` và `∠CAM` là hai góc kề bù
Suy ra:  `∠BAM = ∠CAM = 90° (1)`
Mặt khác:
`MD = MA (GT)`
Suy ra: `ΔAMD` cân tại M
Do đó:  `∠MAD = ∠MDA (2)`
Mà `∠BAM + ∠MAD = 180°` (kề bù)
Và `∠CAM + ∠MDA = 180°` (kề bù)
Từ `(1) , (2),` ta có:  `∠BAM = ∠MDA`
Mà hai góc này ở vị trí so le trong nên `AB` // `CD`

8 tháng 12 2024

`a,` Xét `ΔABM` và `ΔACM`, ta có:
`AB = AC (`vì `ΔABC` cân tại `A)`
`BM = CM (M` là trung điểm của `BC)`
`AM` là cạnh chung
Suy ra: `ΔABM = ΔACM (c.c.c)`

13 tháng 4 2021

Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?

a) Sửa đề: ΔAMB=ΔDMC

Xét ΔAMB và ΔDMC có 

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

4 tháng 4 2018

lên mạng mà tra

a: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

b: Xét ΔMDE và ΔMCB có

góc MDE=góc MCB

MD=MC

góc DME=góc CMB

=>ΔMDE=ΔMCB

=>DE=BC

=>BC+BD=ED+BD>EB