Chứng minh các đẳng thức sau:
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0\)và \(a\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phá ngoặc
Rồi tính bình thường
Trượt tiêu khi có thể
Sẽ ra đc kết quả VT
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(1-a\sqrt{a}+\sqrt{a}-a\right)\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a.\left(\sqrt{a}\right)^2-\left(\sqrt{a}\right)^2+a\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{a^2-2a+1}{\left(1-a\right)^2}=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)
\(=\left(\frac{a-1}{1-a}\right)^2=\left(-1\right)^2=1=VP\left(ĐPCM\right)\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
ĐK: \(a,b\ge0,a\ne b\)
\(A=\left(\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{a}+\sqrt{b}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1=VP\)
Vậy đẳng thức được cm.
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
Biến đổi vế trái ta có:
\(=\left[\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1}{1+\sqrt{a}}\right]^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(\frac{1}{a+2\sqrt{a}+1}\right)\)
\(=\frac{\left(a+2\sqrt{a}+1\right)}{a+2\sqrt{a}+1}\)
\(=1=VP\)
Vậy đẳng thức được chứng minh