Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) với \(a,b,c\ne0\). Chứng minh rằng \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
=> 2ab = c(a + b)
=> ab + ab = ca + cb
=> ab - cb = ca - ab
=> b( a - c ) = a( c - b )
=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Bài làm :
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Leftrightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\left(1\right)\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\left(2\right)\)
Thay (1) vào (2) ; ta được :
\(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
=> Điều phải chứng minh
Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2ac+2bc=0\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow ab+ac+bc=0\)
Ta lại có giả sử
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3.a^2b^2c^2\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3-3.a^2b^2c^2=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ac\right)-3ab^3c\left(-ac\right)-3a^2b^2c^2=0\)
\(\Leftrightarrow0+3a^2b^2c^2-3a^2b^2c^2+0=0\)
\(\Leftrightarrow0=0\left(lđ\right)\)
Vậy bất đẳng thức được chứng minh
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow2ab=c\left(a+b\right)\)
\(\Rightarrow ab+ab=ca+bc\)
\(\Rightarrow ab-cb=ac-ab\)
\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Trả lời :........................................................
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}......................\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Học sinh giỏi 6A
1/a+1/b+1/c = 0 <=>ab+bc+ca/abc=0
=> ab+bc+ca = 0
Khi đó : (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca) = a^2+b^2+c^2+2.0 = a^2+b^2+c^2
=> ĐPCM
k mk nha