cho da thuc Q(x)=(3x2+2x-7)32
a) tim so du khi chia da thuc Q(x) cho x-1
b) tổng các hệ số của đa thức Q2(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức thương là Q(x) ; đa thức dư là R(x) khi thực hiện phép chia P(x) cho \(x^4\)+\(x^2\)+1 ta viết được : P(x)=Q(x).(\(x^4\)+\(x^2\)+1) + R(x)
=> P(x) - R(x) = Q(x).(\(x^4\)+\(x^2\)+1)
=> R(x) chia cho \(x^2\)+\(x\)+1 có số dư là 1 - x hay R(x) = (ax+b).(\(x^2\)+\(x\)+1)
+1-x
R(x) chia cho \(x^2\)-\(x\)+1 có số dư là 3x-5 hay R(x) = (cx+d).(\(x^2\)-\(x\)+1)
+3x-5
=>(ax+b).(\(x^2\)+\(x\)+1) - (cx+d).(\(x^2\)-\(x\)+1) - 4x-4
<=> \(x^3\)(a-c) + \(x^2\)(a+b+c-d) + \(x\)(a+b-c+d-4) +b-d-4
Áp dụng hệ số bất định ta có:
=>\(\left\{{}\begin{matrix}a-c=0\\a+b+c-d=0\\a+b-c+d-4=0\\b-d-4=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=c\\a+b=2\\b-d=4\\a+b+c-d=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=c\\c-b=2\\b-d=4\\2c+b-d=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=c\\b+c=2\\b-d=4\\b+2c-d=0\end{matrix}\right.\)
Giải hệ phương trình ta có:
\(\left\{{}\begin{matrix}a=c=-2\\b=4\\c=-2\\d=0\end{matrix}\right.\)
Vậy R(x) = (-2x+4).(\(x^2\)+\(x\)+1) + 1-x
Vậy đa thúc dư là \(-2x^3\)+\(2x^2\)+x+5
Bước giải hệ phương trình bạn có thể dùng máy tính CSIO 570 ES PLUS
mà giải( Giải ra dài lắm)
Sử dụng lược đồ hoocne ta có:
2 | -3 | 5 | a | |
x=-2 | 2 | -7 | 19 | 0 |
=> -2 . 19 + a = 0
=> -38 + a = 0 => a = 38
Ta thực hiện phép chia \(2x^3-3x^2+5x+a:x+2\) được số dư phép chia là a - 18
Để \(2x^3-3x^2+5x+a⋮x+2\) thì a - 18 = 0
=> a = 18
ta có x=-1 là nghiệm của đa thức p
hay p(-1)=m2.(-1)+4=0
m2(-1)=-4
m2=-4/ -1=4
m=\(\sqrt{4}\)=2
b) ta có p(-1)=-2
hay p(-1)=a.(-1)+2=-2
a.(-1)=-2-2
a=-4/-1=4
mình không chắc lắm nha