Tìm số nguyên tố ab ( a>b ) sao cho ab-ba là số chính phương
Làm nhanh và đúng thì mình tick cho luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba hoặc a.10 + b - ( b.10 + a )
= 9( a - b ) = 32 ( a - b )
a - b là số chính phương và a>b>0 => a - b = 1 hoặc a - b = 4
a = 4 ; b = 3 hoặc a = 7 ; b = 3
ab = 43 hoặc 73
ab-ba= 10a+b - (10b+a)=10a+b-10b-a=9a-9b=9(a-b)=\(^{3^2}\) (a-b)
Để ab-ba là số chính phương thì thì a-b cũng phải là số chính phương mà a'b là chữ số, nên a-b sẽ là :1,4,9
Nếu a-b=1 =>ab=43( ab nguyên tố)
Nếu a-b=4=>ab=73(chọn)
Nếu a-b=9=>ab=90(loại )
Vậy ab= 43 hoặc 73
\(ab-ba=\left(10a+b\right)-\left(10b+a\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)\)
\(=3^2\left(a-b\right)\)
vì ab là số chính phương
=> a-b là số chính phương
ta có \(1\le a\le8\)nên\(a-b\in\left\{1;4\right\}\)
- với a-b=1
\(\Rightarrow ab\in\left\{21;32;43;54;65;76;87;98\right\}\)
-với a-b=4
\(\Rightarrow ab\in\left\{51;62;73;84;95\right\}\)
vì a là số nguyên tố nên ab=73
\(\Rightarrow ab\in\left\{43;73\right\}\)
ab - ba = 10a + b - (10b + a) = 9a - 9b = 9 (a - b) + 32 (a -b)
Để ab-ba là số chính phương thì a-b là số chính phương mà a:b là các chữ số nên a -b chỉ có thể = 1;4;9
a-b=1; suy ra ab thuộc {21;32;43;54;65;76;87;98}
ab nguyên tố nên ab=43 (thỏa mãn)
a-b=4; suy ra ab thuộc {51;62;73;84;95}
ab nguyên tố nên ab=73 (thỏa mãn)
a-b=9,suy ra ab= 90 (loại)
Vậy ab=43 hoặc ab=73
hok tốt, mk tự làm có j sai sót mong bỏ qua ^^
Do ab va ba đều là các số nguyên tố nên a, b đều là các số lẻ
a,b là một số chẵn
Ta có ab, bà =10a+b-10b-a=(a-b) là một số chính phương nên ab phải là một số chính phương . a, b từ 1 đến 9 nên a, b là số chính phương <9 và là số chẵn nên a,b =4. mà a,b đều số lẻ nên chỉ có thể là (a,b)=(9,5);(7,3);(5,1). Thử lại thì chỉ có số 37 là thỏa mãn nhất
ab‐ba=10a+b‐10b‐a=9a‐9b=9﴾a‐b﴿ là số chính phương
=>a‐b là số chính phương
=>a‐b=1;4 xét a‐b=1
=>ba=23
=>ab=32 a‐b=4
=>ba=37
=>ab=73
vậy ab=32;73
k cho mk mình k lại cho nha :D
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤ 9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Vì a,b là chữ số tự nhiên mà a,b là số nguyên tố nên a,b\(\in\){2;3;5;7}
Thay từng trường hợp vào cho đến khi đến chỗ này:
Với a=3;b=2. Ta có: 32-23=9=32 (là số chính phương)
Vậy số nguyên tố a=3; b=2
ab-ba=10a+b-10b-a=9(a-b)
=> 9(a-b) là số chính phương thì a-b=9 hoặc a-b =1
Vì \(a-b\le8\) nên a-b=1
=> a=2; b=1
=> ab=21
Ta có: ab-ba=n2
10a+b-10b-a=n2
(10a-a)-(10b-b)=n2
9a-9b=n2
9(a-b)=n2
mà n2 có thể =32=9
=>a-b =n2, =>a-b thuộc{12;22;32) mà ab nguyên tố
=>a-b=1 =>a=4; b=3
=>a-b=4 =>a=7; b=3
=>a-b=9 mà a;b có 1 chữ số =>loại
Vậy ab thuộc{43;73}
Do \(\overline{ab}-\overline{ba}\) là số chính phương \(\Leftrightarrow\overline{ab}-\overline{ba}=n^2\left(n\in Z\right)\)
\(\Leftrightarrow10a+b-10b-a=n^2\)
\(\Leftrightarrow9a-9b=n^2\Leftrightarrow9\left(a-b\right)=n^2\) (1)
Do \(9;n^2\) là các số chính phương ; Để (1) xảy ra \(\Leftrightarrow a-b\) là số chính phương
Do a > b ; a;b có 1 chứ số \(\Rightarrow a-b\in\left\{1;4;9\right\}\)
+) Với \(a-b=1\Rightarrow\overline{ab}=\left\{98;87;76;65;54;43;32;21\right\}\)
Mà \(\overline{ab}\) là số nguyên tố nên \(\overline{ab}=43\)
+) Với \(a-b=4\Rightarrow\overline{ab}\in\left\{95;84;73;62;51\right\}\)
Mà \(\overline{ab}\) là số nguyên tố nên \(\overline{ab}=73\)
+) Với \(a-b=9\Rightarrow\overline{ab}=90\)(loại vì \(\overline{ab}\) là số nguyên tố )
Vậy \(\overline{ab}=\left\{43;73\right\}\)