K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).

Hiệu bình phương của hai số lẻ đó bằng:

   (2a + 1)2 – (2b + 1)2

= (4a2 + 4a + 1) – (4b2 + 4b + 1)

= (4a2 + 4a) – (4b2 + 4b)

= 4a(a + 1) – 4b(b + 1)

Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2

⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.

⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8

⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.

Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).

12 tháng 8 2020

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

20 tháng 7 2016

gọi 2 số chẵn hơn kém nhau 4đv lầ lượt là 2n và 2n+4

ta có: (2n+4)2-(2n)2=(2n+4-2n)(2n+4+2n)=4(4n+4)=16n+16

vì 16n và 16 chia hết cho 16 nên 16n+16 sẽ chia hết cho 16.hay hiệu các bình phương của 2 số chẵn hơn kém nhau 4đv chia hết cho 16

24 tháng 4 2017

Giải bài 3 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

17 tháng 10 2017

Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)

Ta có:

(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)

= (4k+4).2

=8.(k+1)

Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8

\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)

26 tháng 5 2016

gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3

Cần chứng minh (2a + 1)- (2a + 3)2 chia hết cho 8

có: (2a + 1)- (2a + 3)2 = 4x2 + 4x + 1 - 4x - 12x - 9  = -8x - 8 = -8 (x + 1) 

-8 (x + 1) chia hết cho 8  

=> (đpcm)

26 tháng 5 2016

Gọi 2  lẻ bất kì là a và b

Phải chứng minh a2-b2 chia hết cho 8

Do a2  và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2  và b2  lẻ suy ra a2  và b2 chia 8 dư 1

Suy ra a2-b2 chia hết cho 8

Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8

20 tháng 7 2018

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

7 tháng 8 2016

Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

7 tháng 8 2016

Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1

(2k+1)2-(2a+1)2

= 4k2+4k+1-4a2-4a-1

= 4(k2+k+a2+a)

Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2, 

Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)

Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2

Suy ra a2+a+k2+k chia hết cho 2 

Như vậy bài toán được chứng minh