K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2024

5+5^2+5^3+...+5^21

=5^1+5^2+5^3+...+5^21

Tổng số hạng:(21-1)+1+21(số hạng)

được chia thành:21:3=7(bộ 3 số)

(5+5^2+5^3)+...+(5^19+5^20+5^21)

=(5+25+125)+...+5^18.(5+5^2+5^3)

=155+...+5^18.(5+25+125)

=155.1+...+5^18.155

=155.(1+...+5^18)

Vì 155 chia hết cho 155 nên 155.(1+...+5^18) chia hết cho 155

-Hết-

 

12 tháng 8 2017

a) 4.(1+4)+43.(1+4)+................+459(1+4)

=5.4+5.43+...+5.459

=5.(4+43+.+459) chia hết cho 5

4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)

=21.4+44.21+..+21.458

=21.(4+44+.+458) chia hết cho 21

b) 5.(1+5)+53(1+5)+.+59(1+5)

=6.(5+53+.............+59) chia hết cho 6

23 tháng 7 2018

a) Đặt biểu thức trên là A, ta có:

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)

=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)

=> A = 4 . 5 + 43 . 5 + ... + 459 . 5

=> A = 5(4 + 43 + ... + 459)

=> A ⋮ 5

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)

=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)

=> A = 4 . 21 + 44 . 21 + ... + 458 . 21

=> A = 21(4 + 44 + ... + 458)

=> A ⋮ 21

b) Đặt biểu thức trên là B, ta có:

B = 5 + 52 + 53 + 54 + ... + 510

=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)

=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)

=> B = 5 . 6 + 53 . 6 + ... + 59 . 6

=> B = 6(5 + 53 + ... + 59)

=> B ⋮ 6  

9 tháng 1 2017

A=5+5^2+5^3+...+5^2013

A=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2011+2^2012+5^2013)

A=155+5^4*(5+5^2+5^3)+...+5^2011*(5+5^2+5^3)

A=155+5^4*155+...+5^2011*155

A=155*(5^4+...+5^2011) chia hết cho 155

tk mk nha

thanks

13 tháng 7 2015

a,=7^4(7^2+7-1)

=7^4.55 vậy nó chia hết cho 55

b,16^5=2^20

2^15(2^5+1)

2^15.33 chia hết cho 33

các câu c,d cũng tương tự

19 tháng 7 2016

deu chia het ca

3) (57 - 56 +55) = 55.(52-5+1)= 55.21 \(⋮\) 21

4) 76+75-74= 74.(72+7-1)=74.55=73.7.11.4=73.4.77 \(⋮\) 77

15 tháng 7 2016

3) \(5^7-5^6+5^5=5^5.\left(5^2-5+1\right)=5^5.21⋮21\)

4) \(7^6+7^5-7^4=7^3.\left(7^3+7^2-7\right)=7^3.385=7^3.77.5⋮77\)

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

15 tháng 12 2016

ta co:

=(5+5^2+5^3)+(5^4+5^5+5^6)+.........+(5^2011+5^2012+5^2013)

=155+5^4*(5+5^2+5^3)+........+5^2011*(5+5^2+5^3)

=155+5^4*155+5^2011*155

=155*(5^4+5^2011+1)

vì 155 chia hết cho 155=>155*(5^4+5^2011+1) chia hết cho 155

vậy A chia hết cho 155

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

`#3107.101107`

a,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)

\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)

\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)

\(=21\cdot\left(2+2^5+...+2^{19}\right)\)

Vì \(21\text{ }⋮\text{ }21\)

\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)

Vậy, \(C\text{ }⋮\text{ }21\)

b,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)

\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)

\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)

\(=10\cdot\left(1+2^4+...+2^{20}\right)\)

Vì \(10\text{ }⋮\text{ }10\)

\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)

Vậy, \(C\text{ }⋮\text{ }10.\)

13 tháng 10 2023

a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³

= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)

= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)

= 2.21 + 2⁷.21 + ... + 2¹⁹.21

= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21

Vậy c ⋮ 21

b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³

= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)

= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)

= 10 + 2⁴.10 + ... + 2²⁰.10

= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10

Vậy c ⋮ 10