Chứng minh rằng : |a|-|b| bé thua hoặc bằng |a-b|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ X A+B=2 =>A=2-B
TA CÓ: AB=(2-B)B
=2B-B^2
=-B^2+2B-1+1
= -(B-1)^2+1
VÌ (B-1)^2 > =0 => -(B-1)^2 < = (VỚI MỌI Y)
=>-(B-1)^2+1< = 1(VỚI MỌI Y)
VẬY AB < = 1
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
Đúng nha !
Với a;b > 0 ta có:
\(\sqrt{a}+\sqrt{b}\le\dfrac{b}{\sqrt{a}}+\dfrac{a}{\sqrt{b}}\\ \Leftrightarrow\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\le\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\\ \Leftrightarrow a\sqrt{b}+b\sqrt{a}\le a\sqrt{a}+b\sqrt{b}\\ \Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}\ge0\\ \Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)\ge0\)
Bất đẳng thức cuối cùng luôn đúng vì: \(\left\{{}\begin{matrix}\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\\\sqrt{a}+\sqrt{b}>0\left(a;b>0\right)\end{matrix}\right.\)
Vậy bất đẳng thức được chứng minh với a;b >0
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
\(a)\)
\(\frac{x^2+y^2+5}{2}\ge x+2y\)
\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)
\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)
\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)
\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)