K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2024

a: Xét ΔHDC có

N,M lần lượt là trung điểm của HD,HC

=>NM là đường trung bình của ΔHDC

=>NM//DC và \(MN=\dfrac{DC}{2}\)

Ta có: NM//DC
DC\(\perp\)AD

Do đó: NM\(\perp\)DA

b: \(MN=\dfrac{DC}{2}\)

mà \(AB=\dfrac{DC}{2}\)

nên MN=AB

ta có: MN//CD

CD//AB

Do đó: MN//AB

Xét tứ giác ABMN có

AB//MN

AB=MN

Do đó: ABMN là hình bình hành

\(2,\)

A B H C D

Kẻ BH vuông góc với CD tại H

Xét hai tam giác BDH và BCH:

+) BH là cạnh chung

+) Góc BHD = góc BHC = 90 độ

+) DH = CH 

=> Tam giác BDH = tam giác HCH (c.g.c)

=> BD = BC

Khác: DC = BC

=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ

Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

15 tháng 6 2017

3)áp dụng pytago để tính

1 tháng 5 2020

Trả lời :

Bạn Nguyễn Khánh Huyền đừng bình luận linh tinh nhé.

- Hok tốt !

^_^

1 tháng 5 2020

bạn nguyễn thị khánh huyền ơi đừng lấy ảnh của mk đi bình luận linh tinh nhé

ko hay đâu bạn ơi 

30 tháng 4 2020

có cosC=BC/CD=2CM/8CM=1/4

->tính đc góc C-> tính đc góc B

30 tháng 4 2020

Bạn ơi lớp 8 chưa học Cos nhé. Cảm ơn.