K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

đk: \(x\ge y>0\). nhân tương ứng với vế hai pt của hệ ta được 2=(x+y)-(x-y)=>y=1. Với y=1 thay vào pt (2) ta có:

\(\sqrt{\frac{5}{x}}=\sqrt{x+1}+\sqrt{x-1}\)

Xét pt trên ta thấy:

\(x=\frac{5}{4}\)là 1 nghiệm của pt

Nếu \(x>\frac{5}{4}\Rightarrow VT< 2< VP\)

Nếu \(x< \frac{5}{4}\Rightarrow VT>2>VP\)

do đó x=5/4 là nghiệm duy nhất của pt

Vậy hệ pt có nghiệm duy nhất là (x;y)=(5/4;1)

6 tháng 8 2020

Hôm nay sol vài bài trên olm rồi off tiếp

\(\sqrt{xy+y}=\sqrt{y\left(x+1\right)}\)

ĐKXĐ: \(x>-1,y>0\)

Đặt \(\sqrt{x+1}=a;\sqrt{y}=b\left(a,b>0\right)\)

HPT \(\Leftrightarrow\hept{\begin{cases}a^2-1+\frac{1}{a}=\frac{4}{a+b}-1\\b^2+\frac{1}{b}=2ab\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}a^4+a^3b-3a+b=0\\2ab^2-b^3-1=0\end{cases}}\)

PT(2) \(\Leftrightarrow2ab^2=\left(b+1\right)\left(b^2-b+1\right)\Rightarrow a=\frac{\left(b+1\right)\left(b^2-b+1\right)}{2b^2}\)

Thay ngược lên pt(1) tương đương  \(\left(3b^6+8b^3+1\right)\left(b^3-1\right)^2=0\)

\(\Rightarrow b=1\rightarrow a=1\)

HPT có nghiệm duy nhất a = b = 1

6 tháng 8 2020

Khúc sau từ suy ra x, y nhé. Quên mất lỡ bấm gửi.

25 tháng 5 2020

ĐK: \(x+y\ne0;x\ge2\)

\(\hept{\begin{cases}\frac{4}{x+y}+3\sqrt{4x-8}=14\\\frac{5-x-y}{x+y}-2\sqrt{x-2}=\frac{-5}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

Đặt: \(\frac{1}{x+y}=u\ne0;\sqrt{x-2}=v\ge0\)

ta có hệ: \(\hept{\begin{cases}4u+6v=14\\5u-2v=\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=2\end{cases}}\)thỏa mãn

khi đó ta có: \(\hept{\begin{cases}\frac{1}{x+y}=\frac{1}{2}\\\sqrt{x-2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=6\end{cases}}\)thỏa mãn

Vậy:...

23 tháng 4 2019

Điều kiện xác định \(x,y>0\)

Hệ đã cho tương đương với

\(\hept{\begin{cases}\sqrt{x}-\sqrt{y}+\frac{3}{\sqrt{x}}-\frac{3}{\sqrt{y}}=0\left(1\right)\\2x-\sqrt{xy}=1\left(2\right)\end{cases}}\)

Giải (1) \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)-3\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\right)=0\)

           \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(1-\frac{3}{\sqrt{xy}}\right)=0\)

            \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-\sqrt{y}=0\\1-\frac{3}{\sqrt{xy}}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{3}{\sqrt{xy}}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y\\\sqrt{xy}=3\end{cases}.}\)

Với x=y ta thế vào (2) có \(2x-\sqrt{x^2}=1\Leftrightarrow x=1\left(TMĐK\right)\)

                                     \(\Rightarrow x=y=1\)

Với \(\sqrt{xy}=3\)thế vào (2) có \(2x-3=1\Leftrightarrow x=2\left(TMĐK\right)\)

                                      \(\Rightarrow\sqrt{2y}=3\Leftrightarrow y=\frac{9}{2}\left(TMĐK\right)\)

Vậy hệ có 2 nghiệm.......