Một hình chóp tứ giác đều có cạnh đáy bằng 10dm . Biết số đo diện tích xung quanh ( đơn vị dm2) bằng số đo cuả thể tích (đơn vị dm3). Tính chiều cao , diện tích xung quanh và thể tích của hình chóp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
Nữa chu vi đáy của hình chóp đều:
\(5\cdot4:2=10\left(cm\right)\)
Diện tích xung quanh của hình chóp đều là:
\(S_{xq}=10\cdot6,5=65\left(cm^2\right)\)
Diện tích đáy của hình chóp đều:
\(5^2=25\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot25\cdot6=50\left(cm^3\right)\)
Đáp án D.
Phương pháp:
+) Gọi b là độ dài cạnh bên, sử dụng giả thiết diện tích xung quanh gấp đôi diện tích đáy biểu diễn b theo a.
+) Gọi O = AC ∩ BD ⇒ SO ⊥ (ABCD)
Cách giải:
Gọi b là độ dài cạnh bên, I là trung điểm của BC ⇒ SI ⊥ BC
Tam giác SIB vuông tại I
Sxq=1/2*40*13=20*13=260cm2
Độ dài cạnh ở đáy là 40/4=10cm
V=10^2*12=1200cm3