chứng minh rằng (n+4)(n+9)luôn là một số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Với n là số lẻ
=>n+4 là số lẽ;n+7 là số chẳn
=>(n+4)(n+7) là số chẳn
*Với n là số chẳn
=>n+4 là số chẳn;n+7 là số lẽ
=>(n+4)(n+7) là số chẳn
=>(n+4)(n+7) là số chẳn với mọi số nguyên n
+ nếu n =2k
=> (n+4)(n+7) = (2k+4)(2k+7) =2(k+2)(2k+7) chia hết cho 2
+ Nếu n=2k+1
=> (n+4)(n+7)= (2k+1+4)(2k+1+7) =2(2k+5)(k+4) chia hết cho 2
Vậy (n+4)(n+7) là một số chẵn
Nếu n lẻ thì n+7 chẵn => (n+4).(n+7) chẵn
Nếu n chẵn thì n+4 chẵn => (n+4).(n+7) chẵn
Vậy (n+4).(n+7) chẵn với mọi số nguyên n
k mk nha
Nếu n lẻ thì n+7 chẵn suy ra (n+4).(n+7) chẵn
Nếu n chẵn thì n+4 chẵn suy ra (n+4)(n+7) chẵn
a. Với mọi n thì n có dạng 2k hoặc 2k + 1
* Với n = 2k
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 9 ) ( 2k + 12 )
<=> (n + 9 ) ( n + 12 ) = 2(k + 6)( 2k + 9 ) ( 2k + 12 ) \(⋮\)2 ( 1 )
* Với n = 2k + 1
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 1 + 9 ) ( 2k + 1 + 12 )
<=> (n + 9 ) ( n + 12 ) = ( 2k + 10 ) ( 2k + 13 )
<=> (n + 9 ) ( n + 12 ) = 2( k + 5 ) ( 2k + 13 ) \(⋮\)2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra A = ( n + 9 ).( n + 12 ) luôn là số chẵn
b. B = n2 + n + 3
<=> B = n( n + 1 ) + 3
Mà n( n + 1 ) luôn chẵn nên n( n + 1 ) + 3 lẻ
Suy ra B = n2 + n + 3 luôn là số lẻ
a. Trong A, luôn có 1 số chẵn ( n có dạng 2k hoặc 2k + 1) đều thỏa mãn
=> Tích luôn bằng a
b. Nếu n = 2k
thì B = (2k)mũ 2 + 2k + 1
= 4k2 + 2k + 1 ( là số lẻ )
Nếu n = 2k+1
thì B = ( 2k + 1 )2 + 2k+ 1 + 1
= 4k2 + 1 + 2k + 2 ( là số lẻ )
=> đpcm
Đề bai ban thieu dieu kien cua n nhe. O day mh lam theo n la so nguyen ( Truong hop n la STN lam tuong tu)
Nếu n=2k(k \(\in\)Z) => n+4=2k+4\(⋮\)2
=> (n+4)(n+9)\(⋮\)2
Nếu n=2k+1(k\(\in\)Z)=>n+9=2k+10\(⋮\)2
=>(n+4)(n+9)\(⋮\)2
Vay voi moi so nguyen n thi (n+4)(n+9) la so chan
ko hiểu ?????