cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:
\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)
Với n = 1 thì nó đúng.
Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)
Từ (1) và (2) cái ta cần chứng minh trở thành:
\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)
\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)
Vậy ta có ĐPCM.
Áp dụng và bài toán ta được
\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)
\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Mà đẳng thức trên xảy ra dấu =
\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)
Bài kia tí nghĩ nốt, khó v
Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
với c=0=>a=0 đẳng thức đúng
với c khác 0 ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}}{c^{2018}}=\frac{b^{2018}}{d^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)
=>\(\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)