Cho M = 2+22+23+...+220
Chứng tỏ rằng M \(⋮\)5
( giải bài chi tiết giúp ạ , 2tk )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\\ M=\left(2+2^2\right)+2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ M=\left(2+2^2\right)\left(1+2+...+2^{18}\right)\\ M=6\left(1+2+...+2^{18}\right)⋮6\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
Vì tổng 1050+44 có chữ số tận cùng là chữ số chẵn nên \(⋮\)2
Để 1050+44 \(⋮\)9 thì 1+0+0+...+0+4+4 \(⋮\)9
=9\(⋮\)9
Vậy 1050+44 \(⋮\)2,\(⋮\)9
\(10^{50}+44⋮2\)( vì có chữ số tận cùng là chẵn )
\(10^{50}-1=\left(100...0\right)-1\)
\(=\left(99...9\right)⋮9\)
\(\Rightarrowđpcm\)
M = \(2+2^2+2^3+...+2^{20}\)
M = \(2\left(1+2+2^2+2^3\right)\)+ ..... + \(2^{17}\left(1+2+2^2+2^3\right)\)
M = 2 . 15 + .... + \(2^{17}.15\)
M = 15 ( 2 + ... + \(2^{17}\)) chia hết cho 5 ( Do 15 chia hết cho 5)
ta có :
M=(2+22 +23+24)+....+217+218+219+220
M=2*1+2*2+22*2+23*2+....+217*1+217*2+217*22+217*23
M=2*(1+2+2 mũ 2+2 mũ 3)+...+2 mũ 17*(1+2+2 mũ 2 +2 mũ 3)
M=2*15+...+217*15
M=(2+...+2 mũ 17)*15
vì 15 chia het cho 5 nen bieu thuc tren chia het cho 5
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
M = 2 + 22 + 23 + ... + 220
Đầu tiên tính M đã hem
2M = 2 ( 2 + 22 + 23 +.... + 220 )
2M = 22 + 23 + 24 + ... + 221
2M - M = ( dòng 2M ngay trên ) - ( đầu bài )
M = 221 - 2
M = 220 . 2 - 2
M = (24)5 . 2 - 2 ( vào năm sẽ bít )
M = ( ... 6 ) . 2 - 2
M = (...2) - 2
M = ...0 chia hết cho 5
Học tốt
\(M=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(=2.15+...+2^{17}.15\)
\(=15\left(2+2^5+...+2^{17}\right)⋮5\)