K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{400}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)

\(=20-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)< 20\) (1)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

.......

\(\frac{1}{20^2}< \frac{1}{19.20}=\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

\(\Rightarrow A>20-1=19\) (2)

Từ (1) và (2) => 19 < A < 20 

Vậy...

17 tháng 11 2017

số số hạng là 19 chứ ko phải 20 ST

8 tháng 5 2016

A=(1-\(\frac{1}{4}\))+(1-\(\frac{1}{9}\))+(1-\(\frac{1}{16}\))+...+(1-\(\frac{1}{400}\)).

A=19-(\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\))

Ta thấy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}<1\)

=>A>19-1=18(đpcm)

1 tháng 5 2017

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

4 tháng 5 2017

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà

20 tháng 3 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{5000}\)

\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{5000}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}++\frac{1}{9}+\frac{1}{16}+...+\frac{1}{5000}\right)\)

\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)< 49\)\(\left(1\right)\)

Lại có : 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow\)\(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>-1\)

\(\Rightarrow\)\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>49-1=48\)\(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(48< S< 49\)

Vậy S không là số tự nhiên 

Chúc bạn học tốt ~ 

20 tháng 3 2018

\(S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\left(1\right)\)

Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>-1\)

\(\Rightarrow A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>49-1=48\)(2)

Từ (1) và (2) => 48<A<49 

Vậy S không phải là stn

25 tháng 2 2019

\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(\Rightarrow M=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+....+\frac{20^2-1}{20^2}\)

\(\Rightarrow M=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+....+\frac{20^2}{20^2}-\frac{1}{20^2}\)

\(\Rightarrow M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{20^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{20^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{19\cdot20}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{19}{20}< 1\)

\(\Rightarrow A< 1\)

\(\Rightarrow M>18\)

14 tháng 10 2018

\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)

\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Do từ 2 đến 20 có \(20-2+1=19\) nên : 

\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)

\(A>\frac{1}{2}-\frac{1}{21}\)

\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)

\(\Rightarrow\)\(M>8\) ( đpcm ) 

Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v 

Chúc bạn học tốt ~ 

21 tháng 1 2019

\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)

\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)

\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)

\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)

\(=\frac{1}{2}-\frac{1}{21}\)

\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)

b sai  đề.chừng nào chữa đề thì làm

6 tháng 5 2016

Xét A= \(\frac{3}{4}\)\(\frac{8}{9}\) +...+ \(\frac{399}{400}\)

= (1 - \(\frac{1}{2^2}\)) + (1- \(\frac{1}{3^2}\)) +...+ (1- \(\frac{1}{20^2}\))

= (1+1+1+...+1) - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\)) Bạn phải mở ngoặc có 19 số 1 nha!

= 19 - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\))  

Đặt B =\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\) < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{19.20}\) = 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{19}\) - \(\frac{1}{20}\) = 1 - \(\frac{1}{20}\) = \(\frac{19}{20}\)

=> A= 19 - B= 18+ 1- \(\frac{19}{20}\) >18 => A>18

8 tháng 3 2018

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

4 tháng 2 2019

đúng ko zậy 

22 tháng 2 2016

\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)

=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)

=\(\frac{2\cdot51}{50\cdot3}\)

=\(\frac{17}{25}\)

Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]