cho góc ngọn xOy trên tia Ox lấy hai điểm A và C, trên tia Oy lấy hai điểm B và D sao cho OA=OB, OC=OD ( điểm A nằm giữa O và C, điểm B nằm giữa O và D)
1/ Chứng minh \(\Delta OAD\)=\(\Delta OBC\)
2/ \(\widehat{CAD}\)=\(\widehat{CBD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{O}\): góc chung
OC = OD (GT)
Vậy tam giác OAD = tam giác OBC (c.g.c)
b/ Ta có: tam giác OAD = tam giác OBC (câu a)
=> \(\widehat{OAD}\)=\(\widehat{OBC}\) (2 góc tương ứng)
Mà \(\widehat{OAD}\)+\(\widehat{DAC}\) = 1800 (kề bù)
và \(\widehat{OBC}\)+\(\widehat{CBD}\) = 1800 (kề bù)
=> \(\widehat{CAD}\)=\(\widehat{CBD}\)(đpcm)
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
a, xét tma giác OAD và tam giác OBC có: góc O chung
OA = ob (Gt)
OC = OD (gt)
=> tam giác OAD = tam giác OBC (c-g-c)
b, tam giác OAD = tam giác OBC (câu a)
=> AD = BC (đn) (1)
OA = OB (gt)
OC = OD (gt)
AC = OC - OA
BD = OD - OB
=> AC = BD
xét tam giác BCD và tam giác ACD có: CD chung
(1)
=> tam giác BCD = tam giác ACD (c-c-c)
=> góc CAD = góc CBD (Đn)