1.Cho n € N . CMR các số sau là hai số nguyên tố cùng nhau
a) 3n + 1 và 6n + 1
b) 2n + 3 và 3n + 4
Giúp mình với nhé!
Mình cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a: Gọi a là UCLN(3n+1;6n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Bài giải
a: Gọi a là UCLN(3n+1;6n+3)
⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
a: Gọi d=ƯCLN(n+3;n+2)
=>n+3-n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+3;3n+5)
=>6n+9-6n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>2n+3 và 3n+5là hai số nguyên tố cùng nhau
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a) Gọi ƯCLN(3n+1,6n+1)=d
=> 3n+1 và 6n+1 chia hết chưa d
=> 2(3n+1) và 6n+1 chia hết chưa d
=>6n+2 và 6n+1 chia hết cho d
=>(6n+2)-(6n+1)=1 chia hết cho d
=>d=1
=> 3n+1 và 6n+1 nguyên tố cùng nhau
b, Gọi ƯCLN(2n+3,3n+4)=d
=>2n+3 và 3n+4 chia hết cho d
=>3(2n+3) và 2(3n+4) chia hết cho d
=>6n+9 và 6n+8 chia hết cho d
=>(6n+9)-(6n+8)=1 chia hết cho d
=>d=1
=>2n+3 và 3n+4 nguyên tố cùng nhau