x chia hết 5, x chia hết 20 và x nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(35=5\cdot7;105=3\cdot5\cdot7\)
=>\(ƯCLN\left(35;105\right)=35\)
\(35⋮x;105⋮x\)
=>\(x\inƯC\left(35;105\right)\)
mà x lớn nhất
nên x=ƯLCN(35;105)
=>x=35
b:
\(72=2^3\cdot3^2;54=3^3\cdot2\)
=>\(ƯCLN\left(72;54\right)=3^2\cdot2=18\)
\(72⋮x;54⋮x\)
=>\(x\inƯC\left(72;54\right)\)
=>\(x\inƯ\left(18\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
mà 10<x<20
nên x=18
c:
\(21=3\cdot7;35=5\cdot7;50=5^2\cdot2\)
=>\(BCNN\left(21;35;50\right)=5^2\cdot2\cdot3\cdot7=1050\)
\(x⋮21;x⋮35;x⋮50\)
=>\(x\in BC\left(21;35;50\right)\)
=>\(x\in B\left(1050\right)\)
mà x nhỏ nhất
nên x=1050
d:
\(39=3\cdot13;65=5\cdot13;26=2\cdot13\)
=>\(BCNN\left(39;65;26\right)=2\cdot3\cdot5\cdot13=390\)
\(x⋮39;x⋮65;x⋮26\)
=>\(x\in BC\left(39;65;26\right)\)
=>\(x\in B\left(390\right)\)
=>\(x\in\left\{390;780;1170;...\right\}\)
mà 100<=x<=999
nên \(x\in\left\{390;780\right\}\)
A) 24 ⋮ x; 18 ⋮ x nên x ƯC(24; 18)
24 = 2³.3
18 = 2.3²
⇒ ƯCLN(24; 18) = 2.3 = 6
⇒ x ∈ ƯC(24; 18) = Ư(6) = {1; 2; 3; 6}
Mà x ≥ 9
⇒ Không tìm được x thỏa mãn yêu cầu
B) 12 ⋮ x; 20 ⋮ x nên x ∈ ƯC(12; 20)
12 = 2².3
20 = 2².5
⇒ ƯCLN(12; 20) = 2² = 4
⇒ x ∈ ƯC(12; 20) = Ư(4) = {1; 2; 4}
Mà x ≥ 5
⇒ Không tìm được x thỏa mãn yêu cầu
C) 24 ⋮ x; 36 ⋮ x và x lớn nhất
⇒ x = ƯCLN(24; 36)
24 = 2³.3
36 = 2².3²
⇒ x = ƯCLN(24; 36) = 2².3 = 12
D) 64 ⋮ x; 48 ⋮ x nên x ∈ ƯC(64; 48)
64 = 2⁶
48 = 2⁴.3
⇒ ƯCLN(64; 48) = 2⁴ = 16
⇒ x ∈ ƯC(64; 48) = Ư(16) = {1; 2; 4; 8; 16}
Mà 3 ≤ x 20
⇒ x ∈ {4; 8; 16}
Giải:
Vì x chia hết cho 40 và x chia hết cho 20 nên x chia hết cho 40 (1)
Và x nhỏ nhất khác 0 (2)
Nên từ (1) và (2) suy ra x=40
x⋮40; x⋮20 và x nhỏ nhất khác 0
Giải:
Vì x chia hết cho cả 40 và 20 nên x ={1, 2, 4, 5, 10, 20, 40}
"Nhưng nếu chỉ chọn một số thì ta phải chọn số 1 không thể chọn 40 vì nó lớn nhất trong tập hợp chứ không phải nhỏ nhất trong tập hợp"
Tham khảo vì mik hơi lừi;
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90
a, ta có : x chia hết cho 36
=> x thuộc BC(36,90)
x chia hết cho 90
Vì x nhỏ nhất và x khác 0 => x = BCNN(36,90)
Mà 36= 2^2.3^2 90 = 2.3^2.5
=> BCNN(36,90)= 2^2.3^2.5= 180
=> BC(36,90)=B(180)=(0,180,360,...)
Vì x nhỏ nhất khác 0 =>x=180
c, Ta có : a chia hết cho 36 , a chia hết cho 30 , a chia hết cho 20 => a thuộc BC(36,30,20)
Mà 36 = 2^2.3^2 30 = 2.3.5 20 = 2^2.5
=> BCNN(36,30,20) = 2^2.3^2.5 = 180
=> BC(36,30,20) = B(180) = { 0,180,360,.....}
Vì a nhỏ nhất khác 0 => a = 180
a, Giải
Ta có : 108 chia hết cho x, 180 chia hết cho x => x thuộc ƯC(180,108)
Mà 180 = 2^2.3^2.5 108 = 2^2.3^3
=> ƯCLN(108,180) = 2^2.3^2 = 36
=> ƯC(108,180) = Ư(36) = { 1,2,3,4,6,9,12, 18, 36 }
Vì x>15 => x thuộc { 18,36 }
k mk nha
Vì x+5 chia hết cho 5 => x chia hết cho 5
=> x có tận cùng = 0 hoặc 5.Mà vì x là số tự nhiên nhỏ nhất => x có tận cùng = 0
Vì x-12 chia hết cho 6. => x vừa chia hết cho 2 và 3.
=> b+a = 0+a chia hết cho .3 => a chia hết cho 3
Vì (14+x) chia hết cho 7 => x chia hết cho 17
Vậy a= 7 là phù hợp vậy số cần tìm là 70
đây ko pải là lớp 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!
tick
mình
nha
Vì x chia hết cho 5 => x thuộc B(5)
x chia hết cho 20 => x thuộc B(20)
=> x thuộc BC ( 5 , 20 )
Mà x nhỏ nhất nên x = BCNN ( 5 , 20 )
Ta có : 5 = 5
20 = 2^2 . 5
BCNN ( 5 , 20 ) = 2^2 . 5 = 20
Vậy x = 20
Vì 20 chia hết cho 5 và x nhỏ nhất nên => x = 20