chứng minh \(7^{n+4}-7^n⋮5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì nếu ta lấy 74.n lần lượt các số 1;2;3;4;... đều có chữ số tận cùng là 1 rồi ta lấy số đó cộng với 4 thì sẽ ra số có chữ số tận cùng là 5 nên số 74.n+4 chia hết cho 5
7^4n=(7^2)^2n=49^2n=(49^2)^n=(...1)^n=...1
=>7^4n+4=...1+4=...5 chia hết cho 5.
a, \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
\(KL....\)
b, đề hơi sai pn ạ
c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55
d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
a, 2−1.2n+4.2n=9.25
⇒2n.92 =288
⇒2n=64
⇒n=6
KL....
b, đề hơi sai pn ạ
c, 76+75−74=74(72+7−1)=74.55chia hết cho 55
d, A=1+5+52+53+...+549+550
⇒5A=5+52+53+54+...+550+551
⇒5A−A=551−1
⇒A=551−14
Đề sai rồi bạn ơi. Bạn thử thay n=1 đi