chứng minh rằng: 321 + 322 + 323 + 324 + 325 +326 + 327 + 328 + 329 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{321}{322}.\frac{322}{323}.\frac{323}{324}.\frac{324}{321}\)
Rút gọn số 322 với 322 rồi các số kia nữa thì dc
\(\frac{321}{321}=1\)
321/322 x 322/323 x 323/324 x 324/321 = 321/1 x 1/321 = 1
Kết quả của mình là 1 nha mình biết cách àm đó kết bạn mình gửi tin nhắn cho
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329+20}{5}=0\)
\(\Leftrightarrow\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}+4=0\)
\(\Leftrightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}=0\)
\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x+329=0\). Do \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=-329\)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\frac{x+2+327}{327}+\frac{x+3+326}{326}+\frac{x+4+325}{325}+\frac{x+5+324}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Vì \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)
Nên \(x+329=0\)
\(\Leftrightarrow\)\(x=-329\)
Vậy \(x=-329\)
Chúc bạn học tốt ~
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329+20}{5}=0\)
\(\Rightarrow\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}+4=0\)
\(\Rightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Rightarrow x+329=0\Leftrightarrow\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)
\(\Rightarrow x=-329\)
Vậy \(\Rightarrow x=-329\)
Bạn tính SLS của tổng S rồi chia 2 nhân với 325+1 là ra
321 + 322 + 323 + 324 + 325 +326 + 327 + 328 + 329
= \(3^{21}.\left(1+3+3^2\right)+3^{24}.\left(1+3+3^2\right)+3^{27}.\left(1+3+3^2\right)\)
= \(3^{21}.13+3^{24}.13+3^{27}.13\)
= \(13.\left(3^{21}+3^{24}+3^{27}\right)\)
vì \(13⋮13\) nên \(13.\left(3^{21}+3^{24}+3^{27}\right)⋮13\)
vậy 321 + 322 + 323 + 324 + 325 +326 + 327 + 328 + 329 chia hết cho 13