so sánh 6.2^12 + 2^13 và 3^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 22x+1 = 83.165
=> 22x+1 = (23)3 . (24)5
=> 22x+1 = 29 . 220
=> 22x+1 = 229
=> 2x+1 = 29 ( vì cơ số 2 > 0 )
=> 2x = 29 - 1
=> 2x = 28
=> x = 28 : 2
=> x = 14
Vậy x = 14
Ta có : \(6.2^{12}+2^{13}=3.2.2^{12}+2^{13}=3.2^{13}+2^{13}=2^{13}\left(3+1\right)=2^{13}.4=2^{13}.2^2=2^{15}=\left(2^3\right)^5=8^5\)\(3^{10}=\left(3^2\right)^5=9^5\)
Vì 8 < 9
=> 85 < 95 ( vì 5 > 0 )
=> 6.212 + 213 < 310
Vậy 6.212 + 213 < 310
Đặt \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
\(A>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}=\frac{3}{14}.5=\frac{15}{14}>1\)
\(A< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3}{10}.5=\frac{15}{10}=\frac{3}{2}< 2\)
Vậy \(1< A< 2\)
- Ta có:\(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>1\)(1)
- Ta có:\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
mà \(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)(2)
Từ (1) và (2) => \(1< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)
\(a)\) Chưa biết -_-
\(b)\) \(12^2-8^2=4^2.3^2-4^2.2^2=4^2\left(3^2-2^2\right)>4^2\)
Vậy \(12^2-8^2>4^2\)
\(c)\) \(7^8+7^9=7^8\left(1+7\right)=7^8.8< 7^8.49=7^8.7^2=7^{10}\)
Vậy \(7^8+7^9< 7^{10}\)
Chúc bạn học tốt ~
a) 13^2 = (10+3)^2 = 10^2 + 3^2 + 2.10.3 > 10^2 + 3^2
b) 12^2 - 8^2 = (8 + 4)^2 - 8^2 = 8^2 + 2.4.8 + 4^2 - 8^2 = 2.4.8 + 4^2 > 4^2
c) 7^10 = 7.7^9 = (6+1).7^9 = 6.7^9 + 7^9 = 6.7^9 + 7.7^8 > 7^8 + 7^9
a ,132 >102 +32
vì 169>109
b,122 _ 82 > 42
vì 80>16
c,78 +79 < 710
vì 46118408< 282475249
Lời giải:
Xét tỉ số:
\(\frac{5^{10}+12^{10}}{13^{10}}=(\frac{5}{13})^{10}+(\frac{12}{13})^{10}< (\frac{5}{13})^2+(\frac{12}{13})^2=1\)
$\Rightarrow 5^{10}+12^{10}< 13^{10}$
Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
Có : 6.2^12 + 2^13 = 2^12 . (6+2) = 2^12 . 8 = 2^12 . 2^3 = 2^15 = (2^3)^5 = 8^5
3^10 = (3^2)^5 = 9^5
Vì 8^5 < 9 ^5 nên 6.2^12 + 2^13 < 3^10
Có 6 . 2^12 + 2^13 = 6 . 2^12 + 2^12 . 2 = 2^12( 6 + 2 ) = 2^12 . 8 = 2^12 . 2^3 = 2^15
Giờ ta so sánh 2^15 với 3^10
2^15 = 8^5
3^10 = 9^5
Dễ thấy 8^5 < 9^5 <=> 6.2^12 + 2^13 < 3^10