K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9

a) ∆AHB vuông tại H

loading...⇒ BH = AH.tanBAH

= 4.tan28⁰

≈ 2,1 (cm)

∆AHC vuông tại H

loading...

⇒ CH = AH.tanCAH

= 4.tan41⁰

≈ 3,5 (cm)

b) AH = 4 (cm) (chỗ này không biết thầu Đô có nhầm lẫn gì không)

∆AHC vuông tại H

⇒ AC² = HA² + HC² (Pythagore)

= 4² + 3,5²

= 28,25

⇒ AC ≈ 5,3 (cm)

5 tháng 1 2018

a, Tìm được

BC =  3 13 cm, AH =  18 13 13 cm, BH =  12 13 13 cm và CH =  27 13 13 cm

b, Tìm được BC=25cm, AC=20cm, HC=16cm và AH=12cm

a: BC=căn 6^2+9^2=3*căn 13cm

AH=6*9/3*căn 13=18/căn 13(cm)

BH=AB^2/BC=12/căn 13(cm)

CH=9^2/3*căn 13=27/căn 13(cm)

b: BC=AB^2/BH=25cm

CH=25-9=16cm

AC=căn 16*25=20cm

c: AB=căn 55^2-44^2=33cm

AH=33*44/55=26,4(cm)

BH=33^2/55=19,8cm

CH=55-19,8=35,2cm

d: CH=căn 40^2-24^2=32cm

BC=AC^2/CH=50cm

AB=căn 50^2-40^2=30cm

BH=50-32=18cm

e: HB=AH^2/HC=7,2cm

BC=7,2+12,8=20cm

AB=căn 7,2*20=12(cm)

AC=căn 12,8*20=16(cm)

f: AH=căn 72*12,5=30(cm)

BC=BH+CH=84,5cm

AB=căn 12,5*84,5=32,5cm

AC=căn 84,5^2-32,5^2=78cm

NV
20 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{5}{7}\Rightarrow AB=\dfrac{5AC}{7}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5}{7}AC\right)^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow AC^2=666\Rightarrow AC=3\sqrt{74}\)

\(\Rightarrow AB=\dfrac{15\sqrt{74}}{7}\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\dfrac{222}{7}\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=21\left(cm\right)\)

\(CH=BC-BH=\dfrac{75}{7}\left(cm\right)\)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+9^2=117\)

hay \(BC=3\sqrt{13}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{12\sqrt{13}}{13}\left(cm\right)\\CH=\dfrac{27\sqrt{13}}{13}\left(cm\right)\\AH=\dfrac{18\sqrt{13}}{13}\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC