Cho a, b, c > 4.
Tìm MIN M = \(\frac{a}{\sqrt{b}-2}+\frac{b}{\sqrt{c}-2}+\frac{c}{\sqrt{a}-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Another way: \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)
Ta có BĐT phụ \(\frac{a^2}{\sqrt{a^3+8}}\ge\frac{11a}{18}-\frac{5}{18}\)
\(\Leftrightarrow\frac{\frac{\left(a-1\right)^2\left(121a^3-192a^2-480a+200\right)}{-324a^3-2592}}{\frac{a^2}{\sqrt{a^3+8}}+\frac{11a}{18}-\frac{5}{18}}\ge0\forall0< a\le1\)
TƯơng tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^2}{\sqrt{b^3+8}}\ge\frac{11b}{18}-\frac{5}{18};\frac{c^2}{\sqrt{c^3+8}}\ge\frac{11c}{18}-\frac{5}{18}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{11\left(a+b+c\right)}{18}-\frac{5}{18}\cdot3\ge1\)
"=" khi \(a=b=c=1\)
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(a+b+c\right)^2\cdot\dfrac{81}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16\cdot\left(\dfrac{3}{2}\right)^2}}\)
\(=\dfrac{3\sqrt{17}}{2}\)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Cách khác :)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+16\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Rightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)
Tương tự : \(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c};\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)
Cộng theo vế của 3 bất đẳng thức :
\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge\left(a+b+c\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\sqrt{17}\cdot P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Áp dụng bất đẳng thức Cô-si:
Xét \(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)
\(\ge2\sqrt{\frac{16\cdot4a}{a}}+2\sqrt{\frac{16\cdot4b}{b}}+2\sqrt{\frac{16\cdot4c}{c}}-15\left(a+b+c\right)\)
\(=16\cdot3-15\cdot\frac{3}{2}=\frac{51}{2}\)
Ta có : \(\sqrt{17}\cdot P\ge\frac{51}{2}\)
\(\Leftrightarrow P\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Dự đoán dấu "=" xảy ra khi \(a=b=c=16\Rightarrow M=24\)
Ta cần cm \(M=24\) là GTNN
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(M=\frac{a}{\sqrt{b}-2}+\frac{b}{\sqrt{c}-2}+\frac{c}{\sqrt{a}-2}\)
\(\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-6}\). Tức là cần cm \(\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-6}\ge24\)
\(\Leftrightarrow\frac{t^2}{t-6}\ge24\forall\left(t=\sqrt{a}+\sqrt{b}+\sqrt{c}>6\right)\)
\(\Leftrightarrow t^2\ge24\left(t-6\right)\Leftrightarrow t^2-24t+144\ge0\Leftrightarrow\left(t-12\right)^2\ge0\)*Đúng*