cho P = \(\frac{x+3y-5z}{x-3y+5z}\).Tính P biết x,y,z tỉ lệ với 5,4,3
Giúp mk vs mk đang cần gấp
PLEASE!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x=3y=5z <=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}\)
Từ đó bạn có thế => x,y,z=
2x = 3y = 5z
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=15.5=75\\y=5.10=50\\z=6.5=30\end{cases}}\)
Vậy x = 75 ; y = 50 và z = 30
@@ Học tốt@@
## Chiyuki Fujito
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=4k\)
\(z=5k\)
\(\Rightarrow M=\frac{5x-2y+4z}{x+3y-5z}\)
\(=\frac{5\cdot2k-2\cdot4k+4\cdot5k}{2k+3\cdot4k-5\cdot5k}\)
\(=\frac{10k-8k+20k}{2k+12k-25k}\)
\(=\frac{2k\left(5-4+10\right)}{k\left(2+12-25\right)}\)
\(=\frac{2k\cdot11}{k\cdot\left(-11\right)}\)
\(=-2\)
Xét \(x+y=z+95\Rightarrow x+y-z=95\) (*)
Ta có:
\(2x=3y=5z\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Từ (*) và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
Vậy \(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
\(\hept{\begin{cases}x\left(x+3y+5z\right)=168\\y\left(x+3y+5z\right)=112\\z\left(x+3y+5z\right)=56\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x+3y+5z\right)=168\\3y\left(x+3y+5z\right)=336\\5z\left(x+3y+5z\right)=280\end{cases}}\)
=>\(x\left(x+3y+5z\right)+3y\left(x+3y+5z\right)+5z\left(x+3y+5z\right)=168+336+280\)
<=>\(\left(x+3y+5z\right)^2=784\Leftrightarrow x+3y+5z=\pm28\)
Bạn xét từng trường hợp của x+3y+5z rồi sau đó thế vào giả thiết ban đầu để tìm x;y;z nhé
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow z=5k;y=4k;z=3k\)
\(\Rightarrow P=\frac{x+3y-5z}{x-3y+5z}=\frac{5k+3.4k-5.3k}{5k-3.4k+5.3k}=\frac{5k+12k-15k}{5k-12k+15k}=\frac{2k}{7k}=\frac{2}{7}\)
Vậy \(P=\frac{2}{7}\)