cho đường tròn tâm O bán kính R. Từ điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB, AC với đường tròn tâm O với B,C là tiếp điểm
a/ chứng minh AO là đường trung trực của BC
b/ kẻ đường kính CD của (O) chứng minh BD song song với AO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
a: Xét tứ giác KAOB có
góc KAO+góc KBO=180 độ
nên KAOB là tứ giác nội tiếp
b: Xét (O) có
KA,KB là các tiếp tuyến
nên KA=KB
mà OA=OB
nên OK là trung trực của BA
=>OK vuông góc với AB(1)
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔBCA vuông tại B
=>BC vuông góc với BA(2)
Từ (1), (2) suy ra BC//KO
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
b: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
=>CB\(\perp\)BD
mà AO\(\perp\)BC
nên AO//BD