cmr
\(-\frac{1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\left|x\right|-\left|y\right|\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2\left|xy\right|\)
\(\Rightarrow\left|\frac{2xy}{x^2+y^2}\right|\le1\)(*)
Lại có: \(\left(a+b\right)^2+\left(1-ab\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
Nên: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|=\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\)
Áp dụng (*), ta có: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\le\frac{1}{2}\)
\(\Rightarrow\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|\le\frac{1}{2}\)
\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\) \(\left(đpcm\right)\)
Ta chứng minh
\(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
\(\Leftrightarrow2\left(a+b\right)\left(1-ab\right)+\left(a^2+1\right)\left(b^2+1\right)\ge0\)
\(\Leftrightarrow\left(ab-a-b-1\right)^2\ge0\)(đúng)
Tương tự cho trường hợp còn lại ta có ĐPCM
Đề bài yêu cầu là chứng minh đúng không ạ? Nếu vậy thì e nghĩ đề bị thiếu hay sao ý.
cho đề này:
cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)
\(\left(\frac{a+b}{2-a-b}\right)^2\ge\frac{ab}{\left(1-a\right)\left(1-b\right)}\)
\(\Leftrightarrow\left(\frac{a+b}{2-a-b}\right)^2-\frac{ab}{\left(1-a\right)\left(1-b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2+2ab+b^2\right)\left(a-1\right)\left(b-1\right)-ab\left(a+b-2\right)^2}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
\(\Leftrightarrow\frac{-a^3-b^3+a^2+b^2+a^2b+ab^2-2ab}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
\(\Leftrightarrow\frac{-\left(a-b\right)^2\left(a+b-1\right)}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
BĐT cuối luôn đúng vì \(a;b\in\)\((0;\frac{1}{2}]\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Sử dụng bất đẳng thức quen thuộc: \(4ab\le\left(a+b\right)^2\)
Ta có:
\(\Rightarrow\left[\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right]^2\le\frac{1}{4}\)
\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\)
Vậy \(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\left(đpcm\right)\)