Cho ht ABCD gọi MNEF lần lượt là trung điểm của AB, BC, CD , AD
a) CM : MNEF là hình bình hành
b) Tìm điều kiện hình thang ABCD để MNEF là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và MN=AC/2
Xét ΔDCA có
E,F lần lượt là trung điểm của CD,DA
=>EF là đường trung bình
=>EF//AC và EF=AC/2
=>MN//EF và MN=EF
Xét tứ giác MNEF có
MN//EF
MN=EF
Do đó: MNEF là hình bình hành
b: Để MNEF là hình chữ nhật thì MN vuông góc NE
mà MN//AC và NE//BD
nên AC vuông góc BD
1/ là hình bình hành
2/ chưa vận đồng não để tưởng tượng hình...
1/ xét ΔABD có :
AM=MB , BN=ND
=>MN là đường TB của ΔABD
=>MN//AD , MN=1/2AD (1)
chứng minh tương tự với tam giác ACD ta có : EF//AD , EF=1/2AD (2)
từ (1) và (2) =>MN//EF,MN=EF
vậy tứ giác MNEF là hình bình hành
2/
a) vì MNEF là hình bình hành nên để MNEF là hình chữ nhật thì góc M =90o
b) vì MN//EF nên MNEF là hình thang
c) vì MNEF là hình chữ nhật nên để MNEF là hình vuông thì MN=NE
Cm: Nối AM:
Xét t/giác ABC có: AM = MB (gt)
BN = NC (gt)
=> MN là đường trung bình của t/giác ABC
=> MN // AC và MN = 1/2AC (1)
Xét t/giác ADC có: AF = FD (gt)
DE = EC (gt)
=> EF là đường trung bình của t/giác ABC
=> EF // AC và EF = 1/2AC (2)
Từ (1) và (2) => MN // EF và MN = EF => MNEF là hình bình hành (*)
Do ABCD là HCN => AB = DC => 1/2AB = 1/2DC => AM = DE
Xét t/giác AFM và t/giác DFE
có: AF = FD (gt)
\(\widehat{A}=\widehat{D}=90^0\) (gt)
AM = DE (cmt)
=> t/giác AFM = t/giác DFE (c.g.c)
=> FM = FE (2 cạnh t/ứng) (**)
Từ (*) và (**) => MNEF là hình thoi
\(\Delta BCD\)có :
\(BE=EC\)( gt )
\(DF=FC\)( gt )
\(\Rightarrow\)EF - đtb t/g BCD
\(\Delta ADB\)có :
\(AM=MD\)( gt )
\(AN=NB\)( gt )
\(\Rightarrow\)MN - đtb t/g ADB ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra EF = Mn ; EF // MN
\(\Rightarrow\)MNEF - hbh
đến đây tự chứng minh tiếp hình thoi nha
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành