tìm min và max của : \(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
\(dkxđ\Leftrightarrow\left\{{}\begin{matrix}-x^2+5x\ge0\\-x^2+3x+18\ge0\end{matrix}\right.\)\(\Rightarrow0\le x\le5\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\le5\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
\(\sqrt{5x-x^2}=\sqrt{-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)}=\sqrt{-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\right]}=\sqrt{-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}}\ge0\left(1\right)\)
\(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)
\(\sqrt{-x^2+3x+18}=\sqrt{-\left(x^2-3x-18\right)}=\sqrt{-\left[x^2-3x+\dfrac{9}{4}-\dfrac{81}{4}\right]}=\sqrt{-\left(x-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}\ge\sqrt{-\left(5-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}=\sqrt{8}\left(2\right)\)
dấu"=" xảy ra \(< =>x=5\)
\(\left(1\right)\left(2\right)\Rightarrow A\ge\sqrt{8}\) \(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)\(\Rightarrow MinA=\sqrt{8}\)
\(\left(maxA=\sqrt{48}\right)dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=\dfrac{15}{7}\)
\(\)
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:
$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$
$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$
Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)
$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$
b)
Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:
$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$
Vậy $f_{\min}=\sqrt{2}$
Lại có, theo BĐT AM-GM:
$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$
Vậy $f_{\max}=3$
c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:
$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt như phần b.
$f_{\min}=2\sqrt{2}$
$f_{\max}=8$
d) Tương tự:
$f_{\min}=2$ khi $x=\pm 2$
$f_{\max}=2+2\sqrt{2}$ khi $x=0$
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$
$a^2+b^2=4$
Gọi biểu thức cần tìm min max là $D$
$D=a+b-ab=(a-2)(2-b)+4-(a+b)$
Vì $a^2+b^2=4\Rightarrow a,b\leq 2$
$\Rightarrow (a-2)(2-b)\leq 0$
Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$
$\Rightarrow a+b\geq 2$
Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$
Vậy $D_{\max}=2$ khi $x=\pm 2$
--------------------
$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$
$D=a+b-ab=\sqrt{4+2ab}-ab$
$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$
$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$
$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$
Vì $ab\leq 2\rightarrow ab-2\leq 0$
$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$
$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$